vllm/vllm/v1/executor/gpu_executor.py
youkaichao e893795443
[2/N] executor pass the complete config to worker/modelrunner (#9938)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2024-11-02 07:35:05 -07:00

92 lines
3.3 KiB
Python

import os
from typing import Optional, Tuple
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ObservabilityConfig, ParallelConfig,
PromptAdapterConfig, SchedulerConfig,
SpeculativeConfig)
from vllm.logger import init_logger
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.worker.gpu_worker import Worker
logger = init_logger(__name__)
class GPUExecutor:
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
speculative_config: Optional[SpeculativeConfig],
prompt_adapter_config: Optional[PromptAdapterConfig],
observability_config: Optional[ObservabilityConfig],
) -> None:
self.model_config = model_config
self.cache_config = cache_config
self.lora_config = lora_config
self.load_config = load_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
self.speculative_config = speculative_config
self.prompt_adapter_config = prompt_adapter_config
self.observability_config = observability_config
self.worker = self._create_worker()
self.worker.initialize()
self.worker.load_model()
def _create_worker(
self,
local_rank: int = 0,
rank: int = 0,
distributed_init_method: Optional[str] = None) -> Worker:
"""Return worker init args for a given rank."""
# see https://github.com/NVIDIA/nccl/issues/1234
os.environ['NCCL_CUMEM_ENABLE'] = '0'
if distributed_init_method is None:
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
return Worker(
vllm_config=self.vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
)
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks by invoking the
underlying worker.
"""
return self.worker.determine_num_available_blocks()
def initialize_cache(self, num_gpu_blocks: int) -> None:
"""Initialize the KV cache by invoking the underlying worker.
"""
# NOTE: This is logged in the executor because there can be >1 worker
# with other executors. We could log in the engine level, but work
# remains to abstract away the device for non-GPU configurations.
logger.info("# GPU blocks: %d", num_gpu_blocks)
self.worker.initialize_cache(num_gpu_blocks)
self.worker.compile_or_warm_up_model()
def execute_model(
self,
scheduler_output,
) -> ModelRunnerOutput:
output = self.worker.execute_model(scheduler_output)
return output
def check_health(self) -> None:
# GPUExecutor will always be healthy as long as
# it's running.
return