vllm/docs/models/generative_models.md
Harry Mellor 164b2273c8
[Docs] Fix broken links to docs/api/summary.md (#23637)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 13:00:18 +00:00

145 lines
5.5 KiB
Markdown

# Generative Models
vLLM provides first-class support for generative models, which covers most of LLMs.
In vLLM, generative models implement the[VllmModelForTextGeneration][vllm.model_executor.models.VllmModelForTextGeneration] interface.
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
which are then passed through [Sampler][vllm.model_executor.layers.sampler.Sampler] to obtain the final text.
## Configuration
### Model Runner (`--runner`)
Run a model in generation mode via the option `--runner generate`.
!!! tip
There is no need to set this option in the vast majority of cases as vLLM can automatically
detect the model runner to use via `--runner auto`.
## Offline Inference
The [LLM][vllm.LLM] class provides various methods for offline inference.
See [configuration](../api/README.md#configuration) for a list of options when initializing the model.
### `LLM.generate`
The [generate][vllm.LLM.generate] method is available to all generative models in vLLM.
It is similar to [its counterpart in HF Transformers](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate),
except that tokenization and detokenization are also performed automatically.
```python
from vllm import LLM
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate("Hello, my name is")
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
You can optionally control the language generation by passing [SamplingParams][vllm.SamplingParams].
For example, you can use greedy sampling by setting `temperature=0`:
```python
from vllm import LLM, SamplingParams
llm = LLM(model="facebook/opt-125m")
params = SamplingParams(temperature=0)
outputs = llm.generate("Hello, my name is", params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
!!! important
By default, vLLM will use sampling parameters recommended by model creator by applying the `generation_config.json` from the huggingface model repository if it exists. In most cases, this will provide you with the best results by default if [SamplingParams][vllm.SamplingParams] is not specified.
However, if vLLM's default sampling parameters are preferred, please pass `generation_config="vllm"` when creating the [LLM][vllm.LLM] instance.
A code example can be found here: <gh-file:examples/offline_inference/basic/basic.py>
### `LLM.beam_search`
The [beam_search][vllm.LLM.beam_search] method implements [beam search](https://huggingface.co/docs/transformers/en/generation_strategies#beam-search) on top of [generate][vllm.LLM.generate].
For example, to search using 5 beams and output at most 50 tokens:
```python
from vllm import LLM
from vllm.sampling_params import BeamSearchParams
llm = LLM(model="facebook/opt-125m")
params = BeamSearchParams(beam_width=5, max_tokens=50)
outputs = llm.beam_search([{"prompt": "Hello, my name is "}], params)
for output in outputs:
generated_text = output.sequences[0].text
print(f"Generated text: {generated_text!r}")
```
### `LLM.chat`
The [chat][vllm.LLM.chat] method implements chat functionality on top of [generate][vllm.LLM.generate].
In particular, it accepts input similar to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat)
and automatically applies the model's [chat template](https://huggingface.co/docs/transformers/en/chat_templating) to format the prompt.
!!! important
In general, only instruction-tuned models have a chat template.
Base models may perform poorly as they are not trained to respond to the chat conversation.
??? code
```python
from vllm import LLM
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
conversation = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": "Hello"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content": "Write an essay about the importance of higher education.",
},
]
outputs = llm.chat(conversation)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
A code example can be found here: <gh-file:examples/offline_inference/basic/chat.py>
If the model doesn't have a chat template or you want to specify another one,
you can explicitly pass a chat template:
```python
from vllm.entrypoints.chat_utils import load_chat_template
# You can find a list of existing chat templates under `examples/`
custom_template = load_chat_template(chat_template="<path_to_template>")
print("Loaded chat template:", custom_template)
outputs = llm.chat(conversation, chat_template=custom_template)
```
## Online Serving
Our [OpenAI-Compatible Server](../serving/openai_compatible_server.md) provides endpoints that correspond to the offline APIs:
- [Completions API][completions-api] is similar to `LLM.generate` but only accepts text.
- [Chat API][chat-api] is similar to `LLM.chat`, accepting both text and [multi-modal inputs](../features/multimodal_inputs.md) for models with a chat template.