vllm/vllm/compilation/activation_quant_fusion.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

215 lines
6.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod
import torch
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from torch._inductor.pattern_matcher import (
PatternMatcherPass,
fwd_only,
register_replacement,
)
from torch._ops import OpOverload
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.utils.quant_utils import (
QuantKey,
kFp8StaticTensorSym,
kNvfp4Quant,
kStaticTensorScale,
)
from vllm.platforms import current_platform
from .fusion import QUANT_OPS, empty_bf16, empty_fp32, empty_i32
from .inductor_pass import enable_fake_mode
from .vllm_inductor_pass import VllmInductorPass, VllmPatternMatcherPass
logger = init_logger(__name__)
FP8_DTYPE = current_platform.fp8_dtype()
FP4_DTYPE = torch.uint8
SILU_MUL_OP = torch.ops._C.silu_and_mul.default
FUSED_OPS: dict[QuantKey, OpOverload] = {
kFp8StaticTensorSym: torch.ops._C.silu_and_mul_quant.default, # noqa: E501
}
silu_and_mul_nvfp4_quant_supported = current_platform.is_cuda() and hasattr(
torch.ops._C, "silu_and_mul_nvfp4_quant"
)
if silu_and_mul_nvfp4_quant_supported:
FUSED_OPS[kNvfp4Quant] = torch.ops._C.silu_and_mul_nvfp4_quant.default # noqa: E501
class ActivationQuantPattern(ABC):
"""
The base class for Activation+Quant fusions.
Should not be used directly.
"""
def __init__(
self,
quant_key: QuantKey,
):
self.quant_key = quant_key
self.quant_dtype = quant_key.dtype
assert self.quant_key in QUANT_OPS, (
f"unsupported quantization scheme {self.quant_key}"
)
self.QUANT_OP = QUANT_OPS[self.quant_key]
assert self.quant_key in FUSED_OPS, (
f"unsupported fusion scheme {self.quant_key}"
)
self.FUSED_OP = FUSED_OPS[self.quant_key]
def empty_quant(self, *args, **kwargs):
kwargs = {"dtype": self.quant_dtype, "device": "cuda", **kwargs}
return torch.empty(*args, **kwargs)
@abstractmethod
def register(self, pm_pass: PatternMatcherPass):
raise NotImplementedError
class SiluMulFp8StaticQuantPattern(ActivationQuantPattern):
"""
Fusion for SiluMul+Fp8StaticQuant Pattern
"""
def __init__(self, symmetric: bool = True):
quant_key = QuantKey(
dtype=FP8_DTYPE, scale=kStaticTensorScale, symmetric=symmetric
)
super().__init__(quant_key)
def register(self, pm_pass: PatternMatcherPass):
def pattern(
result: torch.Tensor,
result_silu_mul: torch.Tensor,
input: torch.Tensor,
scale: torch.Tensor,
):
at1 = auto_functionalized(SILU_MUL_OP, result=result_silu_mul, input=input)
at2 = auto_functionalized(
self.QUANT_OP, result=result, input=at1[1], scale=scale
)
return at2[1]
def replacement(
result: torch.Tensor,
result_silu_mul: torch.Tensor,
input: torch.Tensor,
scale: torch.Tensor,
):
at = auto_functionalized(
self.FUSED_OP, result=result, input=input, scale=scale
)
return at[1]
inputs = [
self.empty_quant(5, 4), # result
empty_bf16(5, 4), # result_silu_mul
empty_bf16(5, 4), # input
empty_fp32(1, 1), # scale
]
register_replacement(pattern, replacement, inputs, fwd_only, pm_pass)
class SiluMulNvfp4QuantPattern(ActivationQuantPattern):
"""
Fusion for SiluMul+Nvfp4Quant Pattern
"""
def __init__(self):
super().__init__(kNvfp4Quant)
def register(self, pm_pass: PatternMatcherPass):
def pattern(
result: torch.Tensor,
output_scale: torch.Tensor,
result_silu_mul: torch.Tensor,
input: torch.Tensor,
scale: torch.Tensor,
):
at1 = auto_functionalized(SILU_MUL_OP, result=result_silu_mul, input=input)
at2 = auto_functionalized(
self.QUANT_OP,
output=result,
input=at1[1],
output_scale=output_scale,
input_scale=scale,
)
return at2[1], at2[2]
def replacement(
result: torch.Tensor,
output_scale: torch.Tensor,
result_silu_mul: torch.Tensor,
input: torch.Tensor,
scale: torch.Tensor,
):
at = auto_functionalized(
self.FUSED_OP,
result=result,
result_block_scale=output_scale,
input=input,
input_global_scale=scale,
)
return at[1], at[2]
inputs = [
self.empty_quant(5, 32), # result
empty_i32(128, 4), # output_scale
empty_bf16(5, 64), # result_silu_mul
empty_bf16(5, 64), # input
empty_fp32(1, 1), # scale
]
register_replacement(pattern, replacement, inputs, fwd_only, pm_pass)
class ActivationQuantFusionPass(VllmPatternMatcherPass):
"""
This pass fuses a pre-defined set of custom ops into fused ops.
It uses the torch pattern matcher to find the patterns and replace them.
Because patterns can only be registered once, the pass is a singleton.
This will be addressed in a future version of PyTorch:
https://github.com/pytorch/pytorch/pull/139321#issuecomment-2452354980
"""
@enable_fake_mode
def __init__(self, config: VllmConfig):
super().__init__(config)
self.patterns: PatternMatcherPass = PatternMatcherPass(
pass_name="activation_quant_fusion_pass"
)
pattern_silu_mul_fp8 = SiluMulFp8StaticQuantPattern()
pattern_silu_mul_fp8.register(self.patterns)
if silu_and_mul_nvfp4_quant_supported:
pattern_silu_mul_nvfp4 = SiluMulNvfp4QuantPattern()
pattern_silu_mul_nvfp4.register(self.patterns)
self.dump_patterns(config, self.patterns)
@VllmInductorPass.time_and_log
def __call__(self, graph: torch.fx.Graph):
self.matched_count = self.patterns.apply(graph)
logger.debug("Replaced %s patterns", self.matched_count)
def uuid(self):
return VllmInductorPass.hash_source(
self,
ActivationQuantPattern,
SiluMulFp8StaticQuantPattern,
SiluMulNvfp4QuantPattern,
)