vllm/vllm/executor/cpu_executor.py

145 lines
5.5 KiB
Python

import os
from typing import Dict, List, Set, Tuple
import torch
from vllm.config import CacheConfig, ModelConfig, SchedulerConfig
from vllm.executor.executor_base import ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
logger = init_logger(__name__)
class CPUExecutor(ExecutorBase):
def _init_executor(self) -> None:
assert self.device_config.device_type == "cpu"
assert self.lora_config is None, "cpu backend doesn't support LoRA"
self.model_config = _verify_and_get_model_config(self.model_config)
self.cache_config = _verify_and_get_cache_config(self.cache_config)
self.scheduler_config = _verify_and_get_scheduler_config(
self.scheduler_config)
# Instantiate the worker and load the model to CPU.
self._init_worker()
def _init_worker(self):
from vllm.worker.cpu_worker import CPUWorker
assert self.parallel_config.world_size == 1, (
"CPUExecutor only supports single CPU socket currently.")
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
self.driver_worker = CPUWorker(
model_config=self.model_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
device_config=self.device_config,
cache_config=self.cache_config,
load_config=self.load_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method,
lora_config=self.lora_config,
kv_cache_dtype=self.cache_config.cache_dtype,
is_driver_worker=True,
)
self.driver_worker.init_device()
self.driver_worker.load_model()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks by invoking the
underlying worker.
"""
return self.driver_worker.determine_num_available_blocks()
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache by invoking the underlying worker.
"""
# NOTE: We log here to avoid multiple logs when number of workers is
# greater than one. We could log in the engine, but not all executors
# have GPUs.
# NOTE: `cpu block` for CPU backend is located on CPU memory but is
# referred as `gpu block`. Because we want to reuse the existing block
# management procedure.
logger.info(f"# CPU blocks: {num_gpu_blocks}")
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
def execute_model(self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
num_lookahead_slots: int) -> List[SamplerOutput]:
output = self.driver_worker.execute_model(
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
)
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.driver_worker.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.driver_worker.remove_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.driver_worker.list_loras()
def check_health(self) -> None:
# CPUExecutor will always be healthy as long as
# it's running.
return
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
if config.dtype == torch.float16:
logger.warning("float16 is not supported on CPU, casting to bfloat16.")
config.dtype = torch.bfloat16
if not config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
config.enforce_eager = True
return config
def _verify_and_get_scheduler_config(
config: SchedulerConfig) -> SchedulerConfig:
if config.chunked_prefill_enabled:
logger.warning("Chunked prefill is not supported on CPU, disable it.")
config.chunked_prefill_enabled = False
return config
def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
_GB = 1 << 30
if config.enable_prefix_caching:
logger.warning("Prefix caching is not supported on CPU, disable it.")
config.enable_prefix_caching = False
kv_cache_space_str = os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")
kv_cache_space = int(kv_cache_space_str)
if kv_cache_space >= 0:
if kv_cache_space == 0:
config.cpu_kvcache_space_bytes = 4 * _GB # type: ignore
logger.warning("Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
config.cpu_kvcache_space_bytes = kv_cache_space * _GB # type: ignore
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
return config