mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 19:05:35 +08:00
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com> Co-authored-by: Micah Williamson <micah.williamson@amd.com>
624 lines
25 KiB
Python
624 lines
25 KiB
Python
import dataclasses
|
|
import time
|
|
import weakref
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple,
|
|
Type, TypeVar)
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention import get_attn_backend
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.forward_context import set_forward_context
|
|
from vllm.inputs import INPUT_REGISTRY, InputRegistry
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor import SamplingMetadataCache
|
|
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
from vllm.model_executor.model_loader import get_model
|
|
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
|
|
MultiModalKwargs, MultiModalPlaceholderMap,
|
|
MultiModalRegistry)
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
|
|
from vllm.utils import DeviceMemoryProfiler, make_tensor_with_pad
|
|
from vllm.worker.model_runner import AttentionMetadata, SamplingMetadata
|
|
from vllm.worker.model_runner_base import (
|
|
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
|
|
_add_attn_metadata_broadcastable_dict,
|
|
_add_sampling_metadata_broadcastable_dict,
|
|
_init_attn_metadata_from_tensor_dict,
|
|
_init_sampling_metadata_from_tensor_dict)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.attention.backends.abstract import AttentionBackend
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_PAD_SLOT_ID = -1
|
|
|
|
TModelInputForXPU = TypeVar('TModelInputForXPU', bound="ModelInputForXPU")
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ModelInputForXPU(ModelRunnerInputBase):
|
|
"""
|
|
Used by the NeuronModelRunner.
|
|
"""
|
|
input_tokens: Optional[torch.Tensor] = None
|
|
input_positions: Optional[torch.Tensor] = None
|
|
attn_metadata: Optional["AttentionMetadata"] = None
|
|
multi_modal_kwargs: Optional[BatchedTensorInputs] = None
|
|
virtual_engine: Optional[int] = None
|
|
seq_lens: Optional[List[int]] = None
|
|
query_lens: Optional[List[int]] = None
|
|
async_callback: Optional[Callable] = None
|
|
|
|
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
|
|
tensor_dict = {
|
|
"input_tokens": self.input_tokens,
|
|
"input_positions": self.input_positions,
|
|
}
|
|
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
|
|
return tensor_dict
|
|
|
|
@classmethod
|
|
def from_broadcasted_tensor_dict(
|
|
cls: Type[TModelInputForXPU],
|
|
tensor_dict: Dict[str, Any],
|
|
attn_backend: Optional["AttentionBackend"] = None,
|
|
) -> TModelInputForXPU:
|
|
if attn_backend is not None:
|
|
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
attn_backend, tensor_dict)
|
|
return cls(**tensor_dict)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ModelInputForXPUWithSamplingMetadata(ModelInputForXPU):
|
|
"""
|
|
Used by the ModelRunner.
|
|
"""
|
|
sampling_metadata: Optional["SamplingMetadata"] = None
|
|
|
|
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
|
|
tensor_dict = {
|
|
"input_tokens": self.input_tokens,
|
|
"input_positions": self.input_positions,
|
|
}
|
|
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
_add_sampling_metadata_broadcastable_dict(tensor_dict,
|
|
self.sampling_metadata)
|
|
return tensor_dict
|
|
|
|
@classmethod
|
|
def from_broadcasted_tensor_dict(
|
|
cls,
|
|
tensor_dict: Dict[str, Any],
|
|
attn_backend: Optional["AttentionBackend"] = None,
|
|
) -> "ModelInputForXPUWithSamplingMetadata":
|
|
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
|
|
if attn_backend is not None:
|
|
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
attn_backend, tensor_dict)
|
|
return cls(**tensor_dict)
|
|
|
|
|
|
class ModelInputForXPUBuilder(ModelRunnerInputBuilderBase[ModelInputForXPU]):
|
|
|
|
def __init__(self,
|
|
runner: "XPUModelRunner",
|
|
finished_requests_ids: Optional[List[str]] = None) -> None:
|
|
super().__init__()
|
|
self.runner = runner
|
|
self.model_input_cls = self.runner._model_input_cls
|
|
self.attn_backend = self.runner.attn_backend
|
|
self.sliding_window = self.runner.sliding_window
|
|
self.block_size = self.runner.block_size
|
|
self.device = self.runner.device
|
|
|
|
def prepare(self,
|
|
finished_requests_ids: Optional[List[str]] = None) -> None:
|
|
self.seq_group_metadata_list: List[SequenceGroupMetadata] = []
|
|
|
|
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
|
|
self.seq_group_metadata_list.append(seq_group_metadata)
|
|
|
|
def build(self) -> ModelInputForXPU:
|
|
is_prompt = self.seq_group_metadata_list[0].is_prompt
|
|
# Prepare input tensors.
|
|
if is_prompt:
|
|
(input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_kwargs) = self._prepare_prompt(
|
|
self.seq_group_metadata_list)
|
|
else:
|
|
(input_tokens, input_positions,
|
|
attn_metadata) = self._prepare_decode(
|
|
self.seq_group_metadata_list)
|
|
seq_lens = None
|
|
multi_modal_kwargs = None
|
|
|
|
return self.model_input_cls(
|
|
input_tokens=input_tokens,
|
|
input_positions=input_positions,
|
|
attn_metadata=attn_metadata,
|
|
multi_modal_kwargs=multi_modal_kwargs,
|
|
seq_lens=seq_lens,
|
|
query_lens=seq_lens,
|
|
)
|
|
|
|
def _prepare_prompt(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
|
|
BatchedTensorInputs]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
multi_modal_kwargs_list: List[MultiModalKwargs] = []
|
|
multi_modal_placeholder_maps: Dict[
|
|
str,
|
|
MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert seq_group_metadata.is_prompt
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
assert len(seq_ids) == 1
|
|
seq_id = seq_ids[0]
|
|
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
prompt_tokens = seq_data.get_token_ids()
|
|
computed_len = seq_data.get_num_computed_tokens()
|
|
seq_len = len(prompt_tokens)
|
|
|
|
seq_lens.append(seq_len) # Prompt token num
|
|
input_tokens.extend(prompt_tokens) # Token ids
|
|
|
|
# Token position ids
|
|
# NOTE(woosuk): Here we assume that the first token in the prompt
|
|
# is always the first token in the sequence.
|
|
positions_range = range(computed_len, seq_len)
|
|
input_positions.extend(list(positions_range))
|
|
|
|
if seq_group_metadata.multi_modal_data:
|
|
# NOTE: mm_data only includes the subset of multi-modal items
|
|
# that intersect with the current prefill positions.
|
|
mm_data, placeholder_maps = MultiModalPlaceholderMap \
|
|
.from_seq_group(seq_group_metadata, positions_range)
|
|
|
|
if self.runner.mm_registry.has_processor(
|
|
self.runner.model_config):
|
|
mm_kwargs = mm_data
|
|
else:
|
|
mm_kwargs = self.runner.multi_modal_input_mapper(
|
|
mm_data,
|
|
seq_group_metadata.mm_processor_kwargs,
|
|
)
|
|
|
|
multi_modal_kwargs_list.append(mm_kwargs)
|
|
|
|
for modality, placeholder_map in placeholder_maps.items():
|
|
multi_modal_placeholder_maps[modality].extend(
|
|
placeholder_map)
|
|
|
|
if seq_group_metadata.block_tables is None:
|
|
# During memory profiling, the block tables are not initialized
|
|
# yet. In this case, we just use a dummy slot mapping.
|
|
slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
|
|
continue
|
|
|
|
# Compute the slot mapping.
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
|
# where start_idx is max(0, seq_len - sliding_window).
|
|
# For example, if the prompt len is 10, sliding window is 8, and
|
|
# block size is 4, the first two tokens are masked and the slot
|
|
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
|
start_idx = 0
|
|
if self.sliding_window is not None:
|
|
start_idx = max(0, seq_len - self.sliding_window)
|
|
|
|
for i in range(computed_len, seq_len):
|
|
if i < start_idx:
|
|
slot_mapping.append(_PAD_SLOT_ID)
|
|
continue
|
|
|
|
block_number = block_table[i //
|
|
self.block_size] # type: ignore
|
|
block_offset = i % self.block_size # type: ignore
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
num_prompt_tokens = len(input_tokens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
placeholder_index_maps = {
|
|
modality: placeholder_map.index_map()
|
|
for modality, placeholder_map in
|
|
multi_modal_placeholder_maps.items()
|
|
}
|
|
|
|
max_seqlen = max(seq_lens)
|
|
tmp = [0]
|
|
tmp.extend(seq_lens)
|
|
seqlen = torch.tensor(tmp)
|
|
seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=True,
|
|
slot_mapping=slot_mapping,
|
|
multi_modal_placeholder_index_maps=placeholder_index_maps,
|
|
enable_kv_scales_calculation=False,
|
|
seq_lens=seq_lens,
|
|
seqlen_q=seqlen_q,
|
|
max_seqlen=max_seqlen,
|
|
seq_lens_tensor=torch.tensor([]),
|
|
max_decode_seq_len=0,
|
|
num_prefills=len(seq_lens),
|
|
num_prefill_tokens=num_prompt_tokens,
|
|
num_decode_tokens=0,
|
|
block_tables=torch.tensor([], device=self.device, dtype=torch.int),
|
|
)
|
|
|
|
multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
|
|
|
|
return (input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_kwargs)
|
|
|
|
def _prepare_decode(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
block_tables: List[List[int]] = []
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert not seq_group_metadata.is_prompt
|
|
assert seq_group_metadata.token_chunk_size == 1
|
|
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
|
|
for seq_id in seq_ids:
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
generation_token = seq_data.get_last_token_id()
|
|
input_tokens.append(generation_token)
|
|
|
|
seq_len = seq_data.get_len()
|
|
position = seq_len - 1
|
|
input_positions.append(position)
|
|
|
|
seq_len = seq_len if self.sliding_window is None else min(
|
|
seq_len, self.sliding_window)
|
|
seq_lens.append(seq_len)
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
block_number = block_table[position // self.block_size]
|
|
block_offset = position % self.block_size
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
if self.sliding_window is not None:
|
|
sliding_window_blocks = (self.sliding_window //
|
|
self.block_size)
|
|
block_table = block_table[-sliding_window_blocks:]
|
|
block_tables.append(block_table)
|
|
|
|
max_decode_seq_len = max(seq_lens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
seq_lens_tensor = torch.tensor(seq_lens,
|
|
dtype=torch.int,
|
|
device=self.device)
|
|
|
|
block_tables = make_tensor_with_pad(
|
|
block_tables,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=self.device,
|
|
)
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=False,
|
|
slot_mapping=slot_mapping,
|
|
multi_modal_placeholder_index_maps=None,
|
|
enable_kv_scales_calculation=False,
|
|
seq_lens=seq_lens,
|
|
seqlen_q=torch.tensor([]),
|
|
max_seqlen=0,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_decode_seq_len=max_decode_seq_len,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=len(input_tokens),
|
|
num_prefills=0,
|
|
block_tables=block_tables,
|
|
)
|
|
return (
|
|
input_tokens,
|
|
input_positions,
|
|
attn_metadata,
|
|
)
|
|
|
|
|
|
class XPUModelRunner(ModelRunnerBase[ModelInputForXPUWithSamplingMetadata]):
|
|
_model_input_cls: Type[ModelInputForXPUWithSamplingMetadata] = (
|
|
ModelInputForXPUWithSamplingMetadata)
|
|
_builder_cls: Type[ModelInputForXPUBuilder] = ModelInputForXPUBuilder
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
kv_cache_dtype: Optional[str] = "auto",
|
|
is_driver_worker: bool = False,
|
|
return_hidden_states: bool = False,
|
|
input_registry: InputRegistry = INPUT_REGISTRY,
|
|
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
|
|
):
|
|
|
|
ModelRunnerBase.__init__(self, vllm_config=vllm_config)
|
|
model_config = self.model_config
|
|
cache_config = self.cache_config
|
|
self.is_driver_worker = is_driver_worker
|
|
self.return_hidden_states = return_hidden_states
|
|
|
|
self.device = self.device_config.device
|
|
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.sliding_window = model_config.get_sliding_window()
|
|
self.block_size = cache_config.block_size
|
|
|
|
self.attn_backend = get_attn_backend(
|
|
self.model_config.get_head_size(),
|
|
self.model_config.dtype,
|
|
self.kv_cache_dtype,
|
|
self.block_size,
|
|
self.model_config.is_attention_free,
|
|
)
|
|
|
|
# Multi-modal data support
|
|
self.input_registry = input_registry
|
|
self.mm_registry = mm_registry
|
|
self.multi_modal_input_mapper = mm_registry \
|
|
.create_input_mapper(model_config)
|
|
self.mm_registry.init_mm_limits_per_prompt(self.model_config)
|
|
|
|
# Lazy initialization.
|
|
self.model: nn.Module # Set after init_Model
|
|
|
|
self.sampling_metadata_cache: SamplingMetadataCache = \
|
|
SamplingMetadataCache() \
|
|
if self.parallel_config.pipeline_parallel_size == 1 else None
|
|
|
|
self.builder = self._builder_cls(weakref.proxy(self))
|
|
|
|
def load_model(self) -> None:
|
|
with DeviceMemoryProfiler() as m:
|
|
self.model = get_model(vllm_config=self.vllm_config)
|
|
|
|
self.model_memory_usage = m.consumed_memory
|
|
logger.info("Loading model weights took %.4f GB",
|
|
self.model_memory_usage / float(2**30))
|
|
|
|
def get_model(self) -> nn.Module:
|
|
return self.model
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return self.model_config.get_vocab_size()
|
|
|
|
@torch.inference_mode()
|
|
def profile_run(self) -> None:
|
|
# Enable top-k sampling to reflect the accurate memory usage.
|
|
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
|
|
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
|
max_num_seqs = self.scheduler_config.max_num_seqs
|
|
|
|
# Profile memory usage with max_num_sequences sequences and the total
|
|
# number of tokens equal to max_num_batched_tokens.
|
|
seqs: List[SequenceGroupMetadata] = []
|
|
# Additional GPU memory may be needed for multi-modal encoding, which
|
|
# needs to be accounted for when calculating the GPU blocks for
|
|
# vLLM blocker manager.
|
|
# To exercise the worst scenario for GPU memory consumption,
|
|
# the number of seqs (batch_size) is chosen to maximize the number
|
|
# of images processed.
|
|
max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
|
|
self.model_config)
|
|
if max_mm_tokens > 0:
|
|
max_num_seqs_orig = max_num_seqs
|
|
max_num_seqs = min(max_num_seqs,
|
|
max_num_batched_tokens // max_mm_tokens)
|
|
if max_num_seqs < 1:
|
|
expr = (f"min({max_num_seqs_orig}, "
|
|
f"{max_num_batched_tokens} // {max_mm_tokens})")
|
|
logger.warning(
|
|
"Computed max_num_seqs (%s) to be less than 1. "
|
|
"Setting it to the minimum value of 1.", expr)
|
|
max_num_seqs = 1
|
|
|
|
batch_size = 0
|
|
for group_id in range(max_num_seqs):
|
|
seq_len = (max_num_batched_tokens // max_num_seqs +
|
|
(group_id < max_num_batched_tokens % max_num_seqs))
|
|
batch_size += seq_len
|
|
|
|
dummy_data = self.input_registry \
|
|
.dummy_data_for_profiling(self.model_config,
|
|
seq_len,
|
|
self.mm_registry)
|
|
|
|
seq = SequenceGroupMetadata(
|
|
request_id=str(group_id),
|
|
is_prompt=True,
|
|
seq_data={group_id: dummy_data.seq_data},
|
|
sampling_params=sampling_params,
|
|
block_tables=None,
|
|
lora_request=None,
|
|
multi_modal_data=dummy_data.multi_modal_data,
|
|
multi_modal_placeholders=dummy_data.multi_modal_placeholders)
|
|
seqs.append(seq)
|
|
|
|
# Run the model with the dummy inputs.
|
|
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
|
# use an empty tensor instead of `None`` to force Dynamo to pass
|
|
# it by reference, rather by specializing on the value ``None``.
|
|
# the `dtype` argument does not matter, and we use `float32` as
|
|
# a placeholder (it has wide hardware support).
|
|
kv_caches = [
|
|
torch.tensor([], dtype=torch.float32, device=self.device)
|
|
] * num_layers
|
|
finished_requests_ids = [seq.request_id for seq in seqs]
|
|
model_input = self.prepare_model_input(
|
|
seqs, finished_requests_ids=finished_requests_ids)
|
|
intermediate_tensors = None
|
|
if not get_pp_group().is_first_rank:
|
|
intermediate_tensors = self.model.make_empty_intermediate_tensors(
|
|
batch_size=batch_size,
|
|
dtype=self.model_config.dtype,
|
|
device=self.device)
|
|
self.execute_model(model_input, kv_caches, intermediate_tensors)
|
|
torch.xpu.synchronize()
|
|
return
|
|
|
|
def make_model_input_from_broadcasted_tensor_dict(
|
|
self,
|
|
tensor_dict: Dict[str,
|
|
Any]) -> ModelInputForXPUWithSamplingMetadata:
|
|
return (
|
|
ModelInputForXPUWithSamplingMetadata.from_broadcasted_tensor_dict(
|
|
tensor_dict,
|
|
attn_backend=self.attn_backend,
|
|
))
|
|
|
|
def _prepare_model_input_tensors(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
finished_requests_ids: Optional[List[str]] = None
|
|
) -> ModelInputForXPUWithSamplingMetadata:
|
|
"""Helper method to prepare the model input based on a given sequence
|
|
group. Prepares metadata needed for the base model forward pass but not
|
|
metadata for possible additional steps, e.g., sampling.
|
|
|
|
"""
|
|
builder = self.builder
|
|
builder.prepare(finished_requests_ids)
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
builder.add_seq_group(seq_group_metadata)
|
|
|
|
return builder.build() # type: ignore
|
|
|
|
def prepare_model_input(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
virtual_engine: int = 0,
|
|
finished_requests_ids: Optional[List[str]] = None
|
|
) -> ModelInputForXPUWithSamplingMetadata:
|
|
"""Prepare the model input based on a given sequence group, including
|
|
metadata for the sampling step.
|
|
|
|
"""
|
|
model_input = self._prepare_model_input_tensors(
|
|
seq_group_metadata_list, finished_requests_ids)
|
|
# Sampling metadata is only required for the final pp group
|
|
generators = self.get_generators(finished_requests_ids)
|
|
sampling_metadata = SamplingMetadata.prepare(
|
|
seq_group_metadata_list,
|
|
model_input.seq_lens,
|
|
model_input.query_lens,
|
|
self.device,
|
|
pin_memory=False,
|
|
generators=generators,
|
|
cache=self.sampling_metadata_cache)
|
|
|
|
return dataclasses.replace(model_input,
|
|
sampling_metadata=sampling_metadata,
|
|
virtual_engine=virtual_engine)
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
model_input: ModelInputForXPUWithSamplingMetadata,
|
|
kv_caches: List[torch.Tensor],
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
num_steps: int = 1,
|
|
) -> Optional[List[SamplerOutput]]:
|
|
if num_steps > 1:
|
|
raise ValueError(
|
|
"XPUModelRunner does not support multi-step execution.")
|
|
|
|
model_executable = self.model
|
|
if (self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time):
|
|
model_forward_start_time = time.time()
|
|
with set_forward_context(model_input.attn_metadata, self.vllm_config,
|
|
model_input.virtual_engine):
|
|
hidden_or_intermediate_states = model_executable(
|
|
input_ids=model_input.input_tokens,
|
|
positions=model_input.input_positions,
|
|
kv_caches=kv_caches,
|
|
attn_metadata=model_input.attn_metadata,
|
|
intermediate_tensors=intermediate_tensors,
|
|
**MultiModalKwargs.as_kwargs(model_input.multi_modal_kwargs
|
|
or {},
|
|
device=self.device))
|
|
# Compute the logits in the last pipeline stage.
|
|
if not get_pp_group().is_last_rank:
|
|
return hidden_or_intermediate_states
|
|
|
|
if (self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time):
|
|
model_forward_end_time = time.time()
|
|
|
|
# Compute the logits.
|
|
logits = self.model.compute_logits(hidden_or_intermediate_states,
|
|
model_input.sampling_metadata)
|
|
|
|
# Only perform sampling in the driver worker.
|
|
if not self.is_driver_worker:
|
|
return []
|
|
|
|
if model_input.async_callback is not None:
|
|
model_input.async_callback()
|
|
|
|
# Sample the next token.
|
|
output: SamplerOutput = self.model.sample(
|
|
logits=logits,
|
|
sampling_metadata=model_input.sampling_metadata,
|
|
)
|
|
if (self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time
|
|
and output is not None):
|
|
model_forward_time = (model_forward_end_time -
|
|
model_forward_start_time)
|
|
# If there are multiple workers, we are still tracking the latency
|
|
# from the start time of the driver worker to the end time of the
|
|
# driver worker. The model forward time will then end up covering
|
|
# the communication time as well.
|
|
output.model_forward_time = model_forward_time
|
|
|
|
return [output]
|