mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 10:57:10 +08:00
Signed-off-by: Chengji Yao <chengjiyao@gmail.com> Signed-off-by: Chengji Yao <chengjiyao@google.com> Co-authored-by: Chengji Yao <chengjiyao@gmail.com>
412 lines
16 KiB
Python
412 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionLayer, AttentionType)
|
|
from vllm.attention.backends.utils import CommonAttentionState
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import cdiv, next_power_of_2
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# TPU requires the head size to be a multiple of 128.
|
|
TPU_HEAD_SIZE_ALIGNMENT = 128
|
|
|
|
# Note: TPU can fp8 as storage dtype but doesn't support converting from uint8
|
|
# from to fp32 directly. That's why it has a dtype mapping different from GPU
|
|
TPU_STR_DTYPE_TO_TORCH_DTYPE = {
|
|
"half": torch.half,
|
|
"bfloat16": torch.bfloat16,
|
|
"float": torch.float,
|
|
"fp8": torch.float8_e4m3fn,
|
|
"fp8_e4m3": torch.float8_e4m3fn,
|
|
"fp8_e5m2": torch.float8_e5m2,
|
|
"int8": torch.int8,
|
|
"uint8": torch.uint8,
|
|
}
|
|
|
|
try:
|
|
import tpu_commons # noqa: F401
|
|
except ImportError:
|
|
# Lazy import torch_xla
|
|
import torch_xla.core.xla_builder as xb
|
|
import torch_xla.experimental.custom_kernel # noqa: F401
|
|
from torch.library import impl
|
|
from torch_xla._internal.jax_workarounds import requires_jax
|
|
from torch_xla.experimental.custom_kernel import XLA_LIB
|
|
|
|
@requires_jax
|
|
def kv_cache_update_op_impl(kv: torch.Tensor, slot_mapping: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
num_kv_update_slices: torch.Tensor,
|
|
page_size: int, num_slices_per_block: int):
|
|
from vllm.attention.ops.pallas_kv_cache_update import kv_cache_update
|
|
new_kv_cache = xb.call_jax(
|
|
kv_cache_update,
|
|
(kv, slot_mapping, kv_cache, num_kv_update_slices), {
|
|
"page_size": page_size,
|
|
"num_slices_per_block": num_slices_per_block
|
|
})
|
|
return new_kv_cache
|
|
|
|
|
|
XLA_LIB.define(
|
|
"kv_cache_update_op(Tensor kv, Tensor slot_mapping," \
|
|
"Tensor kv_cache, Tensor num_kv_update_slices, int page_size," \
|
|
"int num_slices_per_block)" \
|
|
"-> Tensor", )
|
|
|
|
@impl(XLA_LIB, "kv_cache_update_op", "XLA")
|
|
def kv_cache_update_op_xla(kv: torch.Tensor, slot_mapping: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
num_kv_update_slices: torch.Tensor,
|
|
page_size: int,
|
|
num_slices_per_block: int) -> torch.Tensor:
|
|
new_kv_cache = kv_cache_update_op_impl(kv, slot_mapping, kv_cache,
|
|
num_kv_update_slices, page_size,
|
|
num_slices_per_block)
|
|
return new_kv_cache
|
|
|
|
@impl(XLA_LIB, "kv_cache_update_op", "CompositeExplicitAutograd")
|
|
def kv_cache_update_op_non_xla(kv: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
num_kv_update_slices: torch.Tensor,
|
|
page_size: int,
|
|
num_slices_per_block: int) -> torch.Tensor:
|
|
return kv_cache
|
|
|
|
|
|
class PallasAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "PALLAS_VLLM_V1"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> type["PallasAttentionBackendImpl"]:
|
|
return PallasAttentionBackendImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> type["PallasMetadata"]:
|
|
return PallasMetadata
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> tuple[int, ...]:
|
|
padded_head_size = cdiv(
|
|
head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
return (num_blocks, block_size, num_kv_heads * 2, padded_head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
raise RuntimeError("swap_blocks is not used for the TPU backend.")
|
|
|
|
# In recent TPU generations, up to v6e, the SMEM size is 1MB. The
|
|
# block_tables within the PallasMetadata constitute almost the entire SMEM
|
|
# requirement. Its size is max_num_seqs * num_page_per_seq * 4 (Int). Here
|
|
# we simply make sure that the size is smaller than half of SMEM capacity.
|
|
@staticmethod
|
|
def get_min_page_size(vllm_config: VllmConfig) -> int:
|
|
max_num_page_per_req = (1024 * 1024 // 2 //
|
|
vllm_config.scheduler_config.max_num_seqs // 4)
|
|
min_page_size = cdiv(vllm_config.model_config.max_model_len,
|
|
max_num_page_per_req)
|
|
min_page_size = 1 << (min_page_size - 1).bit_length()
|
|
return min_page_size
|
|
|
|
@staticmethod
|
|
def get_max_num_seqs(model_len: int, page_size: int) -> int:
|
|
num_page_per_req = cdiv(model_len, page_size)
|
|
return 1024 * 1024 // 2 // num_page_per_req // 4
|
|
|
|
# TPU has limited SREGs (scalar registers), if page_size is too small, we
|
|
# can spill SREGs easily which leads to bad performance. The strategy we
|
|
# apply here is trying to split max-model-len to 16 pages which make the
|
|
# spill less likely. Meanwhile we make sure the page size is in [16, 256].
|
|
@staticmethod
|
|
def get_page_size(vllm_config: VllmConfig) -> int:
|
|
# TODO: This is a temporary fix for vmem OOM.
|
|
# For long model length, we use 16 page-size to avoid too much
|
|
# VMEM spill. A more robust solution should be implemented to
|
|
# handle VREG spills.
|
|
if vllm_config.model_config.max_model_len > 8192:
|
|
return 16
|
|
page_size = next_power_of_2(
|
|
vllm_config.model_config.max_model_len) // 16
|
|
if page_size <= 16:
|
|
return 16
|
|
if page_size >= 256:
|
|
return 256
|
|
return page_size
|
|
|
|
|
|
@dataclass
|
|
class PallasMetadata:
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
# Used in the PallasAttentionBackendImpl
|
|
slot_mapping: torch.Tensor
|
|
block_tables: torch.Tensor
|
|
context_lens: torch.Tensor
|
|
query_start_loc: torch.Tensor
|
|
num_seqs: torch.Tensor
|
|
num_kv_update_slices: torch.Tensor
|
|
num_slices_per_kv_cache_update_block: int
|
|
|
|
|
|
class PallasAttentionBackendImpl(AttentionImpl):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[list[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
logits_soft_cap: Optional[float] = None,
|
|
attn_type: str = AttentionType.DECODER,
|
|
kv_sharing_target_layer_name: Optional[int] = None,
|
|
) -> None:
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
self.sliding_window = sliding_window
|
|
self.logits_soft_cap = logits_soft_cap
|
|
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
if alibi_slopes is not None:
|
|
raise NotImplementedError("Alibi slopes is not supported.")
|
|
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"PallasAttentionBackendImpl")
|
|
|
|
self.kv_cache_quantized_dtype = None
|
|
if kv_cache_dtype != "auto":
|
|
self.kv_cache_quantized_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE.get(
|
|
kv_cache_dtype.lower().strip())
|
|
|
|
def forward(
|
|
self,
|
|
layer: AttentionLayer,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: PallasMetadata,
|
|
output: Optional[torch.Tensor] = None,
|
|
output_scale: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with Pallas attention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if output_scale is not None:
|
|
raise NotImplementedError(
|
|
"fused output quantization is not yet supported"
|
|
" for PallasAttentionBackendImpl")
|
|
|
|
# For determine_available_memory case.
|
|
if kv_cache.numel() == 0:
|
|
if output is None:
|
|
output = torch.ones_like(query)
|
|
return output
|
|
|
|
num_tokens, hidden_size = query.shape
|
|
query = query.view(num_tokens, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
|
padded_head_size = cdiv(
|
|
self.head_size,
|
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
query = torch.nn.functional.pad(
|
|
query, (0, padded_head_size - self.head_size), value=0.0)
|
|
key = torch.nn.functional.pad(
|
|
key, (0, padded_head_size - self.head_size), value=0.0)
|
|
value = torch.nn.functional.pad(
|
|
value, (0, padded_head_size - self.head_size), value=0.0)
|
|
|
|
if self.kv_sharing_target_layer_name is None and kv_cache.numel() > 0:
|
|
# Write input keys and values to the KV cache.
|
|
# Skip this if sharing KV cache with an earlier attention layer.
|
|
slot_mapping = attn_metadata.slot_mapping
|
|
write_to_kv_cache(
|
|
key,
|
|
value,
|
|
kv_cache,
|
|
slot_mapping,
|
|
attn_metadata.num_slices_per_kv_cache_update_block,
|
|
attn_metadata.num_kv_update_slices,
|
|
self.kv_cache_quantized_dtype,
|
|
layer._k_scale_float,
|
|
layer._v_scale_float,
|
|
)
|
|
|
|
if self.kv_cache_quantized_dtype is not None and (
|
|
layer._k_scale_float == 0.0 or layer._v_scale_float == 0.0):
|
|
raise ValueError(
|
|
"k_scale_float and v_scale_float must be non-zero")
|
|
output = torch.ops.xla.ragged_paged_attention(
|
|
query,
|
|
kv_cache,
|
|
attn_metadata.context_lens,
|
|
attn_metadata.block_tables,
|
|
attn_metadata.query_start_loc,
|
|
attn_metadata.num_seqs,
|
|
# By default, the system utilizes optimized block size and
|
|
# vmem_limit_bytes parameters from the kernel repository. However,
|
|
# these can be manually adjusted for debugging if necessary.
|
|
num_kv_pages_per_block=None,
|
|
num_queries_per_block=None,
|
|
vmem_limit_bytes=None,
|
|
use_kernel=True,
|
|
sm_scale=self.scale,
|
|
sliding_window=self.sliding_window,
|
|
soft_cap=self.logits_soft_cap,
|
|
k_scale=layer._k_scale_float,
|
|
v_scale=layer._v_scale_float,
|
|
)
|
|
|
|
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
|
output = output[:, :, :self.head_size]
|
|
|
|
return output.reshape(num_tokens, hidden_size)
|
|
|
|
|
|
def write_to_kv_cache(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
num_slices_per_kv_cache_update_block: int,
|
|
num_kv_update_slices: torch.Tensor,
|
|
kv_cache_quantized_dtype: Optional[torch.dtype] = None,
|
|
k_scale: float = 1.0,
|
|
v_scale: float = 1.0,
|
|
) -> None:
|
|
""" Write the key and values to the KV cache.
|
|
|
|
Args:
|
|
key: shape = [num_tokens, num_kv_heads, head_size]
|
|
value: shape = [num_tokens, num_kv_heads, head_size]
|
|
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
|
num_slices_per_kv_cache_update_block: int
|
|
"""
|
|
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
|
|
head_size = cdiv(head_size,
|
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
|
|
if kv_cache_quantized_dtype is not None:
|
|
dtype_info = torch.finfo(kv_cache_quantized_dtype)
|
|
key = key.to(torch.float32) / k_scale
|
|
# NOTE: clamp is added here to avoid out of range of quantized dtype
|
|
key = torch.clamp(key, dtype_info.min, dtype_info.max)
|
|
key = key.to(kv_cache_quantized_dtype)
|
|
value = value.to(torch.float32) / v_scale
|
|
value = torch.clamp(value, dtype_info.min, dtype_info.max)
|
|
value = value.to(kv_cache_quantized_dtype)
|
|
|
|
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
|
|
head_size)
|
|
|
|
torch.ops.xla.dynamo_set_buffer_donor_(kv_cache, True)
|
|
|
|
kv_cache = kv_cache.flatten(0, 1)
|
|
new_kv_cache = torch.ops.xla.kv_cache_update_op(
|
|
kv, slot_mapping, kv_cache, num_kv_update_slices, page_size,
|
|
num_slices_per_kv_cache_update_block)
|
|
# NOTE: the in-place copy will be optimized away by XLA compiler.
|
|
kv_cache.copy_(new_kv_cache)
|
|
|
|
|
|
# We can move this function to a common utils file if it's also useful for other
|
|
# hardware.
|
|
def dtype_bits(dtype: torch.dtype):
|
|
if dtype.is_floating_point:
|
|
try:
|
|
return torch.finfo(dtype).bits
|
|
except TypeError:
|
|
pass
|
|
elif dtype.is_complex:
|
|
if dtype is torch.complex32:
|
|
return 32
|
|
elif dtype is torch.complex64:
|
|
return 64
|
|
elif dtype is torch.complex128:
|
|
return 128
|
|
else:
|
|
try:
|
|
return torch.iinfo(dtype).bits
|
|
# torch.iinfo cannot support int4, int2, bits8...
|
|
except TypeError:
|
|
pass
|
|
str_dtype = str(dtype)
|
|
# support torch.int4, torch.int5, torch.uint5...
|
|
if str_dtype.startswith("torch.int") or str_dtype.startswith("torch.uint"):
|
|
return int(str_dtype[-1])
|
|
raise TypeError(f"Getting the bit width of {dtype} is not supported")
|
|
|
|
|
|
def get_dtype_packing(dtype):
|
|
bits = dtype_bits(dtype)
|
|
if 32 % bits != 0:
|
|
raise ValueError(
|
|
f"The bit width must be divisible by 32, but got bits={bits}, "
|
|
"dtype={dtype}")
|
|
return 32 // bits
|
|
|
|
|
|
def get_page_size_bytes(block_size: int, num_kv_heads: int, head_size: int,
|
|
kv_cache_dtype: torch.dtype) -> int:
|
|
"""Returns the size in bytes of one page of the KV cache."""
|
|
padded_head_size = cdiv(head_size,
|
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
num_combined_kv_heads = num_kv_heads * 2
|
|
|
|
# NOTE: for the implicit padding in XLA
|
|
packing = get_dtype_packing(kv_cache_dtype)
|
|
num_combined_kv_heads = cdiv(num_combined_kv_heads, packing) * packing
|
|
|
|
kv_cache_dtype_bits = dtype_bits(kv_cache_dtype)
|
|
return (block_size * num_combined_kv_heads * padded_head_size *
|
|
kv_cache_dtype_bits // 8)
|