131 lines
4.1 KiB
Python

from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.utils import is_hip
class SqueezeLLMConfig(QuantizationConfig):
"""Config class for SqueezeLLM.
Reference: https://arxiv.org/pdf/2306.07629
"""
def __init__(
self,
weight_bits: int,
) -> None:
self.weight_bits = weight_bits
if self.weight_bits != 4:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
f"SqueezeLLM, but got {self.weight_bits} bits.")
self.pack_factor = 32 // self.weight_bits
def __repr__(self) -> str:
return f"SqueezeLLMConfig(weight_bits={self.weight_bits})"
def get_name(self) -> str:
return "squeezellm"
def get_supported_act_dtypes(self) -> List[torch.dtype]:
return [torch.half]
def get_min_capability(self) -> int:
return 70
@staticmethod
def get_config_filenames() -> List[str]:
return ["quant_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "SqueezeLLMConfig":
weight_bits = cls.get_from_keys(config, ["wbits"])
return cls(weight_bits)
def get_linear_method(self) -> "SqueezeLLMLinearMethod":
return SqueezeLLMLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return []
class SqueezeLLMLinearMethod(LinearMethodBase):
"""Linear method for SqueezeLLM.
Args:
quant_config: The SqueezeLLM quantization config.
"""
def __init__(self, quant_config: SqueezeLLMConfig):
self.quant_config = quant_config
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
if input_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 0,
"pack_factor": self.quant_config.pack_factor,
})
lookup_table = Parameter(
torch.empty(
output_size,
self.quant_config.weight_bits**2,
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(lookup_table, {
"output_dim": 0,
})
return {
"qweight": qweight,
"lookup_table": lookup_table,
}
def apply_weights(self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]
lookup_table = weights["lookup_table"]
out_shape = x.shape[:-1] + (qweight.shape[-1], )
reshaped_x = x.reshape(-1, x.shape[-1])
if is_hip():
out_f = torch.zeros(out_shape, dtype=torch.float)
ops.squeezellm_gemm(reshaped_x, qweight, out_f, lookup_table)
out = out_f.to(dtype=torch.float16)
else:
# NOTE: The output tensor should be zero-initialized.
out = torch.zeros(out_shape, dtype=torch.float16)
ops.squeezellm_gemm(reshaped_x, qweight, out, lookup_table)
if bias is not None:
out = out + bias
return out.reshape(out_shape)