vllm/vllm/profiler/layerwise_profile.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

388 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from collections import defaultdict
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from typing import Any, Optional, TypeAlias
import pandas as pd
from torch._C._autograd import DeviceType, _KinetoEvent, _ProfilerResult
from torch._C._profiler import _EventType, _ExperimentalConfig, _ProfilerEvent
from torch.autograd.profiler import FunctionEvent
from torch.profiler import ProfilerActivity, profile
from vllm.profiler.utils import (
TablePrinter,
event_has_module,
event_is_torch_op,
event_module_repr,
event_torch_op_stack_trace,
indent_string,
)
@dataclass
class _ModuleTreeNode:
event: _ProfilerEvent
parent: Optional["_ModuleTreeNode"] = None
children: list["_ModuleTreeNode"] = field(default_factory=list)
trace: str = ""
@property
def is_leaf(self):
return self.event.children is None or len(self.event.children) == 0
@property
def is_torch_op(self):
return event_is_torch_op(self.event)
@property
def is_cuda(self):
return (
self.event.tag == _EventType.Kineto
and self.event.typed[1].device_type == DeviceType.CUDA
)
@dataclass
class SummaryStatsEntry:
name: str
cuda_time_us: float
pct_cuda_time: float
invocations: int
@dataclass
class ModelStatsEntry:
name: str
cpu_time_us: float
cuda_time_us: float
pct_cuda_time: float
trace: str
StatsEntry: TypeAlias = ModelStatsEntry | SummaryStatsEntry
@dataclass
class _StatsTreeNode:
entry: StatsEntry
children: list[StatsEntry]
parent: StatsEntry | None
@dataclass
class LayerwiseProfileResults(profile):
_kineto_results: _ProfilerResult
_kineto_event_correlation_map: dict[int, list[_KinetoEvent]] = field(init=False)
_event_correlation_map: dict[int, list[FunctionEvent]] = field(init=False)
_module_tree: list[_ModuleTreeNode] = field(init=False)
_model_stats_tree: list[_StatsTreeNode] = field(init=False)
_summary_stats_tree: list[_StatsTreeNode] = field(init=False)
# profile metadata
num_running_seqs: int | None = None
def __post_init__(self):
self._build_correlation_map()
self._build_module_tree()
self._build_stats_trees()
def print_model_table(self, column_widths: dict[str, int] = None):
_column_widths = dict(
name=60, cpu_time_us=12, cuda_time_us=12, pct_cuda_time=12, trace=60
)
if column_widths:
_column_widths.update(**column_widths)
filtered_model_table = [
(depth, row)
for depth, row in self._flatten_stats_tree(self._model_stats_tree)
if row.cuda_time_us > 0 or row.cpu_time_us > 0
]
TablePrinter(ModelStatsEntry, _column_widths).print_table(
self._indent_row_names_based_on_depth(
filtered_model_table,
indent_style=lambda indent: "|" + "-" * indent + " ",
)
)
def print_summary_table(self, column_widths: dict[str, int] = None):
_column_widths = dict(
name=80, cuda_time_us=12, pct_cuda_time=12, invocations=15
)
if column_widths:
_column_widths.update(**column_widths)
filtered_summary_table = [
(depth, row)
for depth, row in self._flatten_stats_tree(self._summary_stats_tree)
if row.cuda_time_us > 0
]
TablePrinter(SummaryStatsEntry, _column_widths).print_table(
self._indent_row_names_based_on_depth(
filtered_summary_table,
indent_style=lambda indent: "|" + "-" * indent + " ",
)
)
def export_model_stats_table_csv(self, filename: str):
df = pd.DataFrame(
[asdict(row) for _, row in self._flatten_stats_tree(self._model_stats_tree)]
)
df.to_csv(filename)
def export_summary_stats_table_csv(self, filename: str):
df = pd.DataFrame(
[
asdict(row)
for _, row in self._flatten_stats_tree(self._summary_stats_tree)
]
)
df.to_csv(filename)
def convert_stats_to_dict(self) -> dict[str, Any]:
return {
"metadata": {"num_running_seqs": self.num_running_seqs},
"summary_stats": self._convert_stats_tree_to_dict(self._summary_stats_tree),
"model_stats": self._convert_stats_tree_to_dict(self._model_stats_tree),
}
@staticmethod
def _indent_row_names_based_on_depth(
depths_rows: list[tuple[int, StatsEntry]],
indent_style: Callable[[int], str] | str = " ",
):
indented_rows = []
for depth, row in depths_rows:
if row.cuda_time_us == 0:
continue
indented_row = copy.deepcopy(row)
indented_row.name = indent_string(indented_row.name, depth, indent_style)
indented_rows.append(indented_row)
return indented_rows
def _build_correlation_map(self):
self._kineto_event_correlation_map = defaultdict(list)
for event in self._kineto_results.events():
self._kineto_event_correlation_map[event.correlation_id()].append(event)
def _build_module_tree(self):
self._module_tree = []
event_tree = self._kineto_results.experimental_event_tree()
def _df_traversal(
event: _ProfilerEvent, curr_node: _ModuleTreeNode | None = None
):
# For the tensor parallel case for now only look at task 1
if event.start_tid != 1:
return
if event_has_module(event):
node = _ModuleTreeNode(event=event, parent=curr_node)
if curr_node:
curr_node.children.append(node)
else:
self._module_tree.append(node)
curr_node = node
is_leaf = event.children is None or len(event.children) == 0
if is_leaf and curr_node:
node = _ModuleTreeNode(
event=event,
parent=curr_node,
trace=event_torch_op_stack_trace(
event, until=lambda x: event_has_module(x)
),
)
curr_node.children.append(node)
curr_node = node
for child in event.children:
_df_traversal(child, curr_node)
for root in event_tree:
_df_traversal(root)
def _get_kineto_gpu_event(self, node: _ModuleTreeNode):
if node.event.tag != _EventType.Kineto:
return None
correlated_kineto_events = self._kineto_event_correlation_map.get(
node.event.correlation_id, []
)
iterator = (
x
for x in correlated_kineto_events
if x.device_type() == DeviceType.CUDA and x.name() == node.event.name
)
return next(iterator, None)
def _cumulative_cuda_time(self, node: _ModuleTreeNode):
"Return cuda time in microseconds"
def _cumulative_cuda_time_recursive(node: _ModuleTreeNode):
if node.is_leaf and (gpu_kineto_event := self._get_kineto_gpu_event(node)):
return gpu_kineto_event.duration_ns() / 1000.0
else:
cumulative_cuda_time = 0
for child in node.children:
cumulative_cuda_time += _cumulative_cuda_time_recursive(child)
return cumulative_cuda_time
return _cumulative_cuda_time_recursive(node)
def _total_cuda_time(self):
return sum([self._cumulative_cuda_time(root) for root in self._module_tree])
def _build_stats_trees(self):
summary_dict: dict[str, _StatsTreeNode] = {}
total_cuda_time = self._total_cuda_time()
def pct_cuda_time(cuda_time_us):
return (cuda_time_us / total_cuda_time) * 100
def build_summary_stats_tree_df(
node: _ModuleTreeNode,
parent: _StatsTreeNode | None = None,
summary_trace: tuple[str] = (),
):
if event_has_module(node.event):
name = event_module_repr(node.event)
cuda_time_us = self._cumulative_cuda_time(node)
elif gpu_kineto_event := self._get_kineto_gpu_event(node):
name = gpu_kineto_event.name()
cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
else:
return None
summary_trace = summary_trace + (name,)
if summary_trace in summary_dict:
entry = summary_dict[summary_trace].entry
entry.cuda_time_us += cuda_time_us
entry.invocations += 1
entry.pct_cuda_time = pct_cuda_time(entry.cuda_time_us)
else:
new_node = _StatsTreeNode(
entry=SummaryStatsEntry(
name=name,
cuda_time_us=cuda_time_us,
pct_cuda_time=pct_cuda_time(cuda_time_us),
invocations=1,
),
children=[],
parent=parent,
)
if parent:
parent.children.append(new_node)
summary_dict[summary_trace] = new_node
for child in node.children:
build_summary_stats_tree_df(
child, summary_dict[summary_trace], summary_trace
)
return summary_dict[summary_trace]
self._summary_stats_tree = []
for root in self._module_tree:
self._summary_stats_tree.append(build_summary_stats_tree_df(root))
def build_model_stats_tree_df(
node: _ModuleTreeNode, parent: _StatsTreeNode | None = None
):
if event_has_module(
node.event,
):
name = event_module_repr(node.event)
cuda_time_us = self._cumulative_cuda_time(node)
cpu_time_us = node.event.duration_time_ns / 1000
trace = ""
elif gpu_kineto_event := self._get_kineto_gpu_event(node):
name = gpu_kineto_event.name()
cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
cpu_time_us = 0
trace = node.trace
else:
return None
new_node = _StatsTreeNode(
entry=ModelStatsEntry(
name=name,
cpu_time_us=cpu_time_us,
cuda_time_us=cuda_time_us,
pct_cuda_time=pct_cuda_time(cuda_time_us),
trace=trace,
),
parent=parent,
children=[],
)
if parent:
parent.children.append(new_node)
for child in node.children:
build_model_stats_tree_df(child, new_node)
return new_node
self._model_stats_tree = []
for root in self._module_tree:
self._model_stats_tree.append(build_model_stats_tree_df(root))
def _flatten_stats_tree(
self, tree: list[_StatsTreeNode]
) -> list[tuple[int, StatsEntry]]:
entries: list[tuple[int, StatsEntry]] = []
def df_traversal(node: _StatsTreeNode, depth=0):
entries.append((depth, node.entry))
for child in node.children:
df_traversal(child, depth=depth + 1)
for root in tree:
df_traversal(root)
return entries
def _convert_stats_tree_to_dict(self, tree: list[_StatsTreeNode]) -> list[dict]:
root_dicts: list[dict] = []
def df_traversal(node: _StatsTreeNode, curr_json_list: list[dict]):
curr_json_list.append({"entry": asdict(node.entry), "children": []})
for child in node.children:
df_traversal(child, curr_json_list[-1]["children"])
for root in tree:
df_traversal(root, root_dicts)
return root_dicts
class layerwise_profile(profile):
def __init__(self, num_running_seqs: int | None = None):
"""
layerwise profile constructor.
Args:
num_running_seqs (Optional[int], optional): When given,
num_running_seqs will be passed to LayerProfileResults
for metadata update. Defaults to None.
"""
super().__init__(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record_shapes=True,
with_stack=True,
with_modules=True,
experimental_config=_ExperimentalConfig(verbose=True),
)
self.num_running_seqs = num_running_seqs
def __enter__(self):
return super().__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
super().__exit__(exc_type, exc_val, exc_tb)
self.results = LayerwiseProfileResults(
self.profiler.kineto_results, num_running_seqs=self.num_running_seqs
)