Harry Mellor ea7cf8db35 MoveVllmConfig from config/__init__.py to config/vllm.py (#25271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00

196 lines
7.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from packaging import version
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization import (QuantizationConfig,
QuantizationMethods)
from vllm.model_executor.utils import set_weight_attrs
class DeepSpeedFPConfig(QuantizationConfig):
"""Config for DeepSpeed FP quantizer. It supports fp6 and fp8.
Args:
weight_bits: the target quantization bits, 6 or 8.
group_size: group size for quantizaiton, default to 128.
"""
def __init__(
self,
weight_bits: int = 8,
group_size: int = 512,
) -> None:
super().__init__()
self.weight_bits = weight_bits
self.group_size = group_size
self.valid_types = [torch.bfloat16, torch.float16]
if self.weight_bits not in (6, 8):
raise ValueError(
"Currently, only 6-bit or 8-bit weight quantization are "
f"supported for DeepSpeed FP quantizaiton, but got "
f"{self.weight_bits} bits.")
def __repr__(self) -> str:
return (f"DeepSpeedFPConfig(weight_bits={self.weight_bits}), "
f"group_size={self.group_size}")
@classmethod
def get_name(cls) -> QuantizationMethods:
return "deepspeedfp"
@classmethod
def from_config(cls, config: dict[str, Any]) -> "DeepSpeedFPConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
return cls(weight_bits=weight_bits, group_size=group_size)
def get_linear_method(self) -> "DeepSpeedFPLinearMethod":
return DeepSpeedFPLinearMethod(self)
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 60
@staticmethod
def get_config_filenames() -> list[str]:
return [
"quant_config.json",
"quantize_config.json",
]
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["DeepSpeedFPLinearMethod"]:
if isinstance(layer, LinearBase):
return DeepSpeedFPLinearMethod(self)
return None
class DeepSpeedFPLinearMethod(LinearMethodBase):
"""Linear method for DeepSpeedFP quantizer.
Args:
quant_config: the DeepSpeedFP quantization config.
"""
def __init__(self, quant_config: DeepSpeedFPConfig):
self.quant_config = quant_config
self.weight = None
def create_weights(self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
weight_loader=None,
**extra_weight_attrs):
del output_size
del input_size
output_size_per_partition = sum(output_partition_sizes)
weight = DeepSpeedFPParameter(
torch.Size((output_size_per_partition, input_size_per_partition)),
params_dtype=params_dtype,
quant_config=self.quant_config,
)
set_weight_attrs(weight, {
"input_dim": 1,
"output_dim": 0,
})
layer.register_parameter("weight", weight)
def quant_weight_loader(param, loaded_weight, *args, **kwargs):
# Calls the original weight loader (if any), quantizes the result,
# and then loads the quantized parameter.
if weight_loader is not None:
orig_param_data = param.data
param.data = param.ds_dequantize()
weight_loader(param, loaded_weight, *args, **kwargs)
param.data, loaded_weight = orig_param_data, param.data
param.ds_quantize_(loaded_weight.cuda())
extra_weight_attrs["weight_loader"] = quant_weight_loader
set_weight_attrs(weight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
weight = layer.weight
y = weight.ds_dequantize()
return F.linear(x, y, bias)
class DeepSpeedFPParameter(nn.Parameter):
"""
DeepSpeedFP quantized parameter class that implements fp8/fp6
quantization deepspeed. Weights are stored in quantized form on
GPUs, and can be dequantized on-the-fly when needed by the model.
"""
def __new__(cls, orig_shape: torch.Size, params_dtype: torch.dtype,
quant_config: DeepSpeedFPConfig):
try:
import deepspeed
if version.parse(deepspeed.__version__) < version.parse("0.14.2"):
raise ImportError("deepspeed version is wrong. Please "
"install deepspeed>=0.14.2.")
from deepspeed.ops.fp_quantizer import FP_Quantize
except ImportError as err:
raise ImportError("Please install deepspeed>=0.14.2 via "
"`pip install deepspeed>=0.14.2` to use "
"deepspeedfp quantizer.") from err
data = torch.empty((
orig_shape.numel() // quant_config.group_size,
quant_config.group_size * quant_config.weight_bits // 8 + 4,
),
dtype=torch.int8)
self = torch.Tensor._make_subclass(cls, data, data.requires_grad)
self.orig_shape = orig_shape
self.quant_config = quant_config
self.fp_quantizer = FP_Quantize(group_size=quant_config.group_size)
self.fp_quantizer.orig_shape = orig_shape
self.fp_quantizer.orig_dtype = params_dtype
return self
def ds_quantize_(self, tensor: torch.Tensor):
assert tensor.device.type == "cuda" and tensor.dtype != torch.int8
return self.data.copy_(
self.fp_quantizer.quantize(
tensor.data,
q_bits=self.quant_config.weight_bits,
))
def ds_dequantize(self, fp_out=None) -> torch.Tensor:
"""
Return a tensor containing the dequantized weights of this parameter.
"""
assert self.data.device.type == "cuda" and self.data.dtype == torch.int8
return self.fp_quantizer.dequantize(
self.data, fp_out=fp_out, q_bits=self.quant_config.weight_bits)
def ds_selective_dequantize(self, indices, fp_out=None) -> torch.Tensor:
"""
Return a tensor where only the weights at `indices` are dequantized
(to save HBM -> SRAM bandwidth).
"""
assert self.data.device.type == "cuda" and self.data.dtype == torch.int8
return self.fp_quantizer.selective_dequantize(
self.data,
indices,
fp_out=fp_out,
q_bits=self.quant_config.weight_bits)