mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-30 13:18:41 +08:00
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
345 lines
14 KiB
Python
345 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import enum
|
|
from enum import Enum
|
|
from fractions import Fraction
|
|
from typing import TYPE_CHECKING, Any, Optional, Union
|
|
|
|
import torch
|
|
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.model_executor.layers.fused_moe.layer import FusedMoE
|
|
from vllm.model_executor.layers.linear import LinearMethodBase
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
|
|
get_linear_quant_method)
|
|
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
|
|
GroupQuantScaleParameter,
|
|
PackedColumnParameter,
|
|
PackedvLLMParameter,
|
|
RowvLLMParameter)
|
|
from vllm.transformers_utils.config import get_safetensors_params_metadata
|
|
from vllm.utils import is_list_of
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.model_executor.layers.quantization import QuantizationMethods
|
|
else:
|
|
QuantizationMethods = str
|
|
|
|
|
|
class GPTQConfig(QuantizationConfig):
|
|
"""Config class for GPTQ.
|
|
|
|
Reference: https://arxiv.org/abs/2210.17323
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
weight_bits: int,
|
|
group_size: int,
|
|
desc_act: bool,
|
|
lm_head_quantized: bool,
|
|
dynamic: dict[str, dict[str, Union[int, bool]]],
|
|
autoround_version: str = "",
|
|
modules_in_block_to_quantize: Optional[list[str]] = None,
|
|
) -> None:
|
|
# GPTQModel use `dynamic` config property to allow per module
|
|
# quantization config so each module can be individually optimized.
|
|
# Format is dict[str, dict] where key is a regex string that can
|
|
# perform both positive ("+:" prefixed) or negative ("-:" prefixed)
|
|
# matching of a module.
|
|
# Default to positive match, override base quant config mode, if no
|
|
# prefix is used. Value is in dict format of field key and override
|
|
# value.
|
|
# Negative matching will skip quantization init for this module
|
|
# entirely:
|
|
# non-quantized inference. More details and quantization examples can be
|
|
# found at: https://github.com/ModelCloud/GPTQModel
|
|
# Example:
|
|
# # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
|
|
# # last 1/4 of the layers 16-21 has 8bit and group_size 64
|
|
# dynamic = {
|
|
# #`.*\.` matches the layers_node prefix
|
|
# # positive match layer 10-15
|
|
# r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
|
|
# # positive match layer 16-21
|
|
# r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
|
|
# r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
|
|
# }
|
|
super().__init__()
|
|
self.dynamic = dynamic
|
|
|
|
self.weight_bits = weight_bits
|
|
self.group_size = group_size
|
|
self.desc_act = desc_act
|
|
self.lm_head_quantized = lm_head_quantized
|
|
self.pack_factor = Fraction(32, self.weight_bits)
|
|
if self.weight_bits not in [2, 3, 4, 8]:
|
|
raise ValueError(
|
|
"Currently, only 2/3/4/8-bit weight quantization is "
|
|
f"supported for GPTQ, but got {self.weight_bits} bits.")
|
|
|
|
self.modules_in_block_to_quantize = modules_in_block_to_quantize or []
|
|
|
|
# used to identify GPTQ model quantized by autoround
|
|
self.autoround_version = autoround_version
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"GPTQConfig(weight_bits={self.weight_bits}, "
|
|
f"group_size={self.group_size}, "
|
|
f"desc_act={self.desc_act}), "
|
|
f"lm_head_quantized={self.lm_head_quantized}, "
|
|
f"dynamic={self.dynamic}, "
|
|
f"modules_in_block_to_quantize={self.modules_in_block_to_quantize})"
|
|
)
|
|
|
|
@classmethod
|
|
def get_name(cls) -> QuantizationMethods:
|
|
return "gptq"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
|
|
return [torch.half]
|
|
|
|
@classmethod
|
|
# Need to figure it out
|
|
def get_min_capability(cls) -> int:
|
|
return 60
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> list[str]:
|
|
return ["quantize_config.json"]
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict[str, Any]) -> "GPTQConfig":
|
|
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
|
|
dynamic = {} if dynamic is None else dynamic
|
|
|
|
weight_bits = cls.get_from_keys(config, ["bits"])
|
|
group_size = cls.get_from_keys(config, ["group_size"])
|
|
desc_act = cls.get_from_keys(config, ["desc_act"])
|
|
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
|
|
default=False)
|
|
autoround_version = cls.get_from_keys_or(config, ["autoround_version"],
|
|
default="")
|
|
modules_in_block_to_quantize = cls.get_from_keys_or(
|
|
config, ["modules_in_block_to_quantize"], default=None)
|
|
return cls(weight_bits, group_size, desc_act, lm_head_quantized,
|
|
dynamic, autoround_version, modules_in_block_to_quantize)
|
|
|
|
def get_quant_method(
|
|
self, layer: torch.nn.Module, prefix: str
|
|
) -> Optional[Union["GPTQLinearMethod", "QuantizeMethodBase"]]:
|
|
if isinstance(layer, FusedMoE):
|
|
# GPTQ MoE support: fall back to MoeWNA16 for broad compatibility
|
|
from .moe_wna16 import MoeWNA16Config
|
|
|
|
config = {
|
|
"quant_method": "gptq",
|
|
"bits": self.weight_bits,
|
|
"group_size": self.group_size,
|
|
"sym": True, # GPTQ typically uses symmetric quantization
|
|
"lm_head": False,
|
|
}
|
|
return MoeWNA16Config.from_config(config).get_quant_method(
|
|
layer, prefix)
|
|
|
|
return get_linear_quant_method(self, layer, prefix, GPTQLinearMethod)
|
|
|
|
def apply_vllm_mapper(self, hf_to_vllm_mapper):
|
|
if self.modules_in_block_to_quantize is not None:
|
|
self.modules_in_block_to_quantize = hf_to_vllm_mapper.apply_list(
|
|
self.modules_in_block_to_quantize)
|
|
|
|
def maybe_update_config(self,
|
|
model_name: str,
|
|
revision: Optional[str] = None):
|
|
if self.modules_in_block_to_quantize:
|
|
if is_list_of(self.modules_in_block_to_quantize, list):
|
|
# original modules_in_block_to_quantize: list[list[str]]
|
|
# flatten original modules_in_block_to_quantize
|
|
self.modules_in_block_to_quantize = [
|
|
item for sublist in self.modules_in_block_to_quantize
|
|
for item in sublist
|
|
]
|
|
return
|
|
|
|
unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
|
metadata = get_safetensors_params_metadata(model_name,
|
|
revision=revision)
|
|
quant_layers: set[str] = {
|
|
param_name.rsplit(".", 1)[0]
|
|
for param_name, info in metadata.items()
|
|
if (dtype := info.get('dtype', None))
|
|
and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes
|
|
}
|
|
self.modules_in_block_to_quantize = list(quant_layers)
|
|
|
|
|
|
class ExllamaState(Enum):
|
|
|
|
UNUSED = enum.auto()
|
|
UNINITIALIZED = enum.auto()
|
|
READY = enum.auto()
|
|
|
|
|
|
class GPTQLinearMethod(LinearMethodBase):
|
|
"""Linear method for GPTQ.
|
|
|
|
Args:
|
|
quant_config: The GPTQ quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: GPTQConfig):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: list[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
del output_size # Unused.
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
if input_size_per_partition % self.quant_config.group_size != 0:
|
|
raise ValueError(
|
|
"The input size is not aligned with the quantized "
|
|
"weight shape. This can be caused by too large "
|
|
"tensor parallel size.")
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
if (output_size_per_partition % self.quant_config.pack_factor.numerator
|
|
!= 0):
|
|
raise ValueError(
|
|
"The output size is not aligned with the quantized "
|
|
"weight shape. This can be caused by too large "
|
|
"tensor parallel size.")
|
|
|
|
if self.quant_config.group_size != -1:
|
|
group_size = self.quant_config.group_size
|
|
else:
|
|
group_size = input_size
|
|
exllama_state = ExllamaState.UNINITIALIZED
|
|
scale_and_zero_size = input_size // group_size
|
|
scale_and_zero_input_dim = None
|
|
if (input_size != input_size_per_partition
|
|
and self.quant_config.group_size != -1):
|
|
# For act-order models, we cannot use Exllama for row parallel layer
|
|
if self.quant_config.desc_act:
|
|
exllama_state = ExllamaState.UNUSED
|
|
else:
|
|
# we need to partition qzeros and scales for exllama kernel
|
|
scale_and_zero_size = input_size_per_partition // group_size
|
|
scale_and_zero_input_dim = 0
|
|
|
|
qweight = PackedvLLMParameter(
|
|
data=torch.empty(
|
|
input_size_per_partition // self.quant_config.pack_factor,
|
|
output_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=0,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
weight_loader=weight_loader)
|
|
|
|
g_idx = RowvLLMParameter(data=torch.tensor(
|
|
[
|
|
i // self.quant_config.group_size
|
|
for i in range(input_size_per_partition)
|
|
],
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
weight_loader=weight_loader)
|
|
qzeros_args = {
|
|
"data":
|
|
torch.empty(
|
|
scale_and_zero_size,
|
|
output_size_per_partition // self.quant_config.pack_factor,
|
|
dtype=torch.int32,
|
|
),
|
|
"weight_loader":
|
|
weight_loader
|
|
}
|
|
weight_scale_args = {
|
|
"data":
|
|
torch.empty(
|
|
scale_and_zero_size,
|
|
output_size_per_partition,
|
|
dtype=params_dtype,
|
|
),
|
|
"weight_loader":
|
|
weight_loader
|
|
}
|
|
if scale_and_zero_input_dim is None:
|
|
scales = ChannelQuantScaleParameter(output_dim=1,
|
|
**weight_scale_args)
|
|
qzeros = PackedColumnParameter(
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
**qzeros_args)
|
|
|
|
else:
|
|
scales = GroupQuantScaleParameter(output_dim=1,
|
|
input_dim=0,
|
|
**weight_scale_args)
|
|
qzeros = PackedvLLMParameter(
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
**qzeros_args)
|
|
|
|
layer.register_parameter("qweight", qweight)
|
|
layer.register_parameter("g_idx", g_idx)
|
|
layer.register_parameter("qzeros", qzeros)
|
|
layer.register_parameter("scales", scales)
|
|
|
|
layer.exllama_state = exllama_state
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
# for torch.compile
|
|
layer.qzeros = Parameter(layer.qzeros.data, requires_grad=False)
|
|
layer.qweight = Parameter(layer.qweight.data, requires_grad=False)
|
|
layer.g_idx = Parameter(layer.g_idx.data, requires_grad=False)
|
|
layer.scales = Parameter(layer.scales.data, requires_grad=False)
|
|
|
|
# exllama needs to shuffle the weight after the weight is loaded
|
|
# here we do the shuffle on first forward pass
|
|
if layer.exllama_state == ExllamaState.UNINITIALIZED:
|
|
if self.quant_config.desc_act:
|
|
layer.g_idx.data = torch.argsort(layer.g_idx).to(torch.int)
|
|
else:
|
|
layer.g_idx.data = torch.empty((0, ),
|
|
dtype=torch.int,
|
|
device=layer.g_idx.device)
|
|
layer.exllama_state = ExllamaState.READY
|
|
ops.gptq_shuffle(layer.qweight, layer.g_idx,
|
|
self.quant_config.weight_bits)
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
out_shape = x.shape[:-1] + (layer.qweight.shape[-1], )
|
|
reshaped_x = x.reshape(-1, x.shape[-1])
|
|
|
|
output = ops.gptq_gemm(reshaped_x, layer.qweight, layer.qzeros,
|
|
layer.scales, layer.g_idx,
|
|
layer.exllama_state == ExllamaState.READY,
|
|
self.quant_config.weight_bits)
|
|
if bias is not None:
|
|
output.add_(bias)
|
|
return output.reshape(out_shape)
|