mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-04 23:51:03 +08:00
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
275 lines
11 KiB
Python
275 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The Baidu team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Ernie-MTP model."""
|
|
from collections.abc import Iterable
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .llama import LlamaDecoderLayer
|
|
from .utils import is_pp_missing_parameter, maybe_prefix
|
|
|
|
|
|
class ErnieMultiTokenPredictorLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str,
|
|
) -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
|
|
self.mtp_emb_norm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.mtp_hidden_norm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.mtp_linear_proj = nn.Linear(config.hidden_size * 2,
|
|
config.hidden_size,
|
|
bias=False)
|
|
self.mtp_block = LlamaDecoderLayer(vllm_config, prefix)
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
spec_step_index: int = 0,
|
|
) -> torch.Tensor:
|
|
assert inputs_embeds is not None
|
|
# masking inputs at position 0, as not needed by MTP
|
|
inputs_embeds[positions == 0] = 0
|
|
|
|
inputs_embeds = self.mtp_emb_norm(inputs_embeds)
|
|
previous_hidden_states = self.mtp_hidden_norm(previous_hidden_states)
|
|
|
|
hidden_states = self.mtp_linear_proj(
|
|
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
|
|
|
hidden_states, residual = self.mtp_block(positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=None)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ErnieMultiTokenPredictor(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
self.mtp_start_layer_idx = config.num_hidden_layers
|
|
self.num_mtp_layers = config.num_nextn_predict_layers
|
|
# to map the exact layer index from weights
|
|
self.layers = torch.nn.ModuleDict({
|
|
str(idx):
|
|
ErnieMultiTokenPredictorLayer(
|
|
vllm_config,
|
|
f"{prefix}.layers.{idx}",
|
|
)
|
|
for idx in range(self.mtp_start_layer_idx,
|
|
self.mtp_start_layer_idx + self.num_mtp_layers)
|
|
})
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
return self.layers[str(self.mtp_start_layer_idx + spec_step_idx)](
|
|
inputs_embeds,
|
|
positions,
|
|
previous_hidden_states,
|
|
spec_step_idx,
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
lm_head: ParallelLMHead,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
self.layers[str(self.mtp_start_layer_idx + spec_step_idx)]
|
|
logits = self.logits_processor(lm_head, hidden_states)
|
|
return logits
|
|
|
|
|
|
class ErnieMTP(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
self.config = vllm_config.model_config.hf_config
|
|
self.model = ErnieMultiTokenPredictor(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "model"))
|
|
self.lm_head = ParallelLMHead(self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"))
|
|
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
assert spec_step_idx == 0, "ernie_mtp only support predict one token"
|
|
hidden_states = self.model(input_ids, positions, hidden_states,
|
|
inputs_embeds, spec_step_idx)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.model.compute_logits(hidden_states, self.lm_head,
|
|
spec_step_idx)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
|
|
if self.config.tie_word_embeddings and name.endswith(
|
|
"lm_head.weight"):
|
|
continue
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if "mtp" in name:
|
|
name = self._rewrite_spec_layer_name(self.config, name)
|
|
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
if "mtp" not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if (("mlp.experts." in name) and name not in params_dict):
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if ((name.endswith(".bias") or name.endswith("_bias"))
|
|
and name not in params_dict):
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if ((name.endswith(".bias") or name.endswith("_bias"))
|
|
and name not in params_dict):
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
# According to DeepSeek-V3 Technical Report, MTP modules
|
|
# shares embedding layer. We only load the first weights.
|
|
if "mtp_" not in name and ("embed_tokens" not in name
|
|
and "lm_head" not in name):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
def _rewrite_spec_layer_name(self, config: PretrainedConfig,
|
|
name: str) -> str:
|
|
"""
|
|
Rewrite the weight name to match the format of the original model.
|
|
"""
|
|
spec_layer_weight_names = [
|
|
"embed_tokens", "mtp_emb_norm", "mtp_hidden_norm",
|
|
"mtp_linear_proj"
|
|
]
|
|
layer_idx = config.num_hidden_layers
|
|
for weight_name in spec_layer_weight_names:
|
|
if weight_name in name:
|
|
name = name.replace(
|
|
f"model.{weight_name}.0.",
|
|
f"model.layers.{layer_idx}.{weight_name}.")
|
|
return name
|
|
name = name.replace("model.mtp_block.0.",
|
|
f"model.layers.{layer_idx}.mtp_block.")
|
|
return name
|