vllm/vllm/model_executor/models/nemotron_vl.py
Isotr0py b765adccd7 [V0 Deprecation][Models] Remove all V0 condition for mm embeddings merge (#25331)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00

649 lines
23 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_internvl_chat.py
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from abc import ABC
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
from transformers import AutoModel, PretrainedConfig
from transformers.image_processing_utils_fast import BaseImageProcessorFast
from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.models.internvl import (
BaseInternVLDummyInputsBuilder, BaseInternVLMultiModalProcessor,
BaseInternVLProcessingInfo, InternVLImageEmbeddingInputs,
InternVLImageInputs, InternVLImagePixelInputs, InternVLProcessor)
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import NestedTensors
from vllm.multimodal.processing import PromptUpdateDetails
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.processor import (
cached_image_processor_from_config)
from vllm.transformers_utils.tokenizer import AnyTokenizer
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
maybe_prefix)
IMG_START = '<img>'
IMG_END = '</img>'
IMG_CONTEXT = '<image>'
def build_transform(input_size: int):
return T.Compose([
T.Lambda(lambda img: convert_image_mode(img, 'RGB')),
T.Resize((input_size, input_size),
interpolation=T.InterpolationMode.BICUBIC),
T.ToTensor(),
])
# adapted from https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1
def find_closest_aspect_ratio(
aspect_ratio: float,
target_ratios: list[tuple[int, int]],
*,
width: int,
height: int,
image_size: int,
) -> tuple[int, int]:
best_factor = float('-inf')
best_ratio = (1, 1)
area = width * height
for rw, rh in target_ratios:
target_aspect_ratio = rw / rh
size_factor = min((rw * rh * image_size * image_size) / area, 0.6)
ratio_closeness = min(target_aspect_ratio / aspect_ratio,
aspect_ratio / target_aspect_ratio)
factor = size_factor * ratio_closeness
if factor > best_factor:
best_factor = factor
best_ratio = (rw, rh)
return best_ratio
def calculate_nemotron_vl_targets(
*,
orig_width: int,
orig_height: int,
target_ratios: list[tuple[int, int]],
image_size: int,
use_thumbnail: bool,
) -> tuple[int, int, int]:
aspect_ratio = orig_width / orig_height
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio,
target_ratios,
width=orig_width,
height=orig_height,
image_size=image_size,
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# add thumbnail image if num_blocks != 1
if use_thumbnail and blocks != 1:
blocks += 1
return blocks, target_width, target_height
def dynamic_preprocess_nemotron_vl(
image: Image.Image,
*,
target_ratios: list[tuple[int, int]],
image_size: int,
use_thumbnail: bool,
) -> list[Image.Image]:
orig_width, orig_height = image.size
# calculate the number of blocks without thumbnail
blocks, target_width, target_height = calculate_nemotron_vl_targets(
orig_width=orig_width,
orig_height=orig_height,
target_ratios=target_ratios,
image_size=image_size,
use_thumbnail=False,
)
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def get_nemotron_vl_target_ratios(
min_num: int,
max_num: int,
) -> list[tuple[int, int]]:
target_ratios = {(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1) if min_num <= i * j <= max_num}
return sorted(target_ratios, key=lambda x: x[0] * x[1])
def image_to_pixel_values_nemotron_vl(
image: Image.Image,
*,
input_size: int,
min_num: int,
max_num: int,
use_thumbnail: bool,
) -> torch.Tensor:
target_ratios = get_nemotron_vl_target_ratios(min_num, max_num)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess_nemotron_vl(
image,
target_ratios=target_ratios,
image_size=input_size,
use_thumbnail=use_thumbnail,
)
pixel_values = torch.stack([transform(image) for image in images])
return pixel_values
class NemotronVLProcessor(InternVLProcessor):
def __init__(
self,
config: PretrainedConfig,
tokenizer: AnyTokenizer,
image_processor: BaseImageProcessorFast,
*,
min_dynamic_patch: Optional[int] = None,
max_dynamic_patch: Optional[int] = None,
dynamic_image_size: Optional[bool] = None,
) -> None:
ABC.__init__(self)
self.config = config
self.tokenizer = tokenizer
self.image_processor = image_processor
image_size: int = config.force_image_size
patch_size: int = config.patch_size
if min_dynamic_patch is None:
min_dynamic_patch = 1
assert isinstance(min_dynamic_patch, int)
if max_dynamic_patch is None:
max_dynamic_patch = self.image_processor.max_num_tiles
assert isinstance(max_dynamic_patch, int)
if dynamic_image_size is None:
dynamic_image_size = True
assert isinstance(dynamic_image_size, bool)
self.num_image_token = int(
(image_size // patch_size)**2 * (config.downsample_ratio**2))
self.image_size = image_size
self.min_dynamic_patch = min_dynamic_patch
self.max_dynamic_patch = max_dynamic_patch
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail: bool = self.image_processor.use_thumbnail
@property
def image_token_id(self) -> int:
return self.tokenizer.get_vocab()[IMG_CONTEXT]
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
target_ratios = self.resolve_target_ratios(
use_thumbnail=False, # Applied in calculate_targets
)
num_patches, _, _ = calculate_nemotron_vl_targets(
orig_width=image_width,
orig_height=image_height,
image_size=self.image_size,
target_ratios=target_ratios,
use_thumbnail=self.use_thumbnail,
)
return num_patches * self.num_image_token
def _images_to_pixel_values_lst(
self,
images: list[Image.Image],
min_dynamic_patch: Optional[int] = None,
max_dynamic_patch: Optional[int] = None,
dynamic_image_size: Optional[bool] = None,
) -> list[torch.Tensor]:
min_num, max_num = self.resolve_min_max_num(
min_dynamic_patch=min_dynamic_patch,
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
use_thumbnail=False, # Applied in image_to_pixel_values
)
return [
image_to_pixel_values_nemotron_vl(
image,
input_size=self.image_size,
min_num=min_num,
max_num=max_num,
use_thumbnail=self.use_thumbnail,
) for image in images
]
def _preprocess_image(
self,
text: list[str],
images: list[Image.Image],
min_dynamic_patch: Optional[int] = None,
max_dynamic_patch: Optional[int] = None,
dynamic_image_size: Optional[bool] = None,
) -> tuple[list[str], dict[str, torch.Tensor]]:
if len(images) == 0:
image_inputs = {}
else:
pixel_values_lst = self._images_to_pixel_values_lst(
images,
min_dynamic_patch=min_dynamic_patch,
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
)
image_inputs: dict[str, NestedTensors] = {
"pixel_values_flat":
torch.cat(pixel_values_lst),
"image_num_patches":
torch.tensor([len(item) for item in pixel_values_lst]),
}
for pixel_values in pixel_values_lst:
num_patches = pixel_values.shape[0]
feature_size = num_patches * self.num_image_token
image_repl = self.get_image_repl(feature_size, num_patches)
NVL_IMAGE_CONTEXT = image_repl.full.replace(
"<image>", "<NVL_IMG_CONTEXT>")
text = [
t.replace('<image>', NVL_IMAGE_CONTEXT, 1) for t in text
]
text = [t.replace("<NVL_IMG_CONTEXT>", IMG_CONTEXT) for t in text]
return text, image_inputs
def get_image_repl(
self,
feature_size: int,
num_patches: Optional[int],
) -> PromptUpdateDetails[str]:
repl_features = IMG_CONTEXT * feature_size
repl_full = IMG_START + repl_features + IMG_END
return PromptUpdateDetails.select_text(repl_full, IMG_CONTEXT)
class NemotronVLProcessingInfo(BaseInternVLProcessingInfo):
"""Processing info for Nemotron VL models."""
def get_hf_processor(self, **kwargs: object) -> NemotronVLProcessor:
return self.ctx.init_processor(
NemotronVLProcessor,
config=self.get_hf_config(),
tokenizer=self.get_tokenizer(),
image_processor=self.get_image_processor(),
**kwargs,
)
def get_image_processor(self, **kwargs: object):
return cached_image_processor_from_config(
self.ctx.model_config,
**kwargs,
)
@MULTIMODAL_REGISTRY.register_processor(
BaseInternVLMultiModalProcessor[NemotronVLProcessingInfo],
info=NemotronVLProcessingInfo,
dummy_inputs=BaseInternVLDummyInputsBuilder[NemotronVLProcessingInfo])
class LlamaNemotronVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
SupportsLoRA):
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):
return "<image>"
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self._patch_quant_config(config, quant_config)
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.num_image_token = int(
(image_size // patch_size)**2 * (config.downsample_ratio**2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.llm_arch_name = config.text_config.architectures[0]
self.vision_model = self._init_vision_model(
config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_model"),
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.mlp1 = self._init_mlp1(config)
self.img_context_token_id = None
self.visual_token_mask = None
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _patch_quant_config(self, config: PretrainedConfig,
quant_config: QuantizationConfig):
# the awq models from OpenGVLab missing `modules_to_not_convert`
# patch the quant_config to add `modules_to_not_convert` back
if isinstance(quant_config, AWQConfig):
text_config = config.text_config
llm_quant_config = getattr(text_config, "quantization_config",
None)
if (not quant_config.modules_to_not_convert) and \
(llm_quant_config is not None):
quant_config.modules_to_not_convert.append("vision_model")
def _init_vision_model(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
prefix: str,
):
return AutoModel.from_config(config.vision_config,
trust_remote_code=True)
def _init_mlp1(self, config: PretrainedConfig) -> nn.Sequential:
vit_hidden_size = config.vit_hidden_size
vision_projection_hidden_size = config.projector_hidden_size
llm_hidden_size = config.text_config.hidden_size
return nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio)**2,
bias=True),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio)**2,
vision_projection_hidden_size,
bias=True),
nn.GELU(),
nn.Linear(vision_projection_hidden_size, llm_hidden_size),
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
pass
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
# https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1/blob/main/modeling.py#L177
vit_embeds = self.vision_model(x=pixel_values).features
vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
h = w = int(vit_embeds.shape[1]**0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds,
scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1,
vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[InternVLImageInputs]:
pixel_values_flat = kwargs.pop("pixel_values_flat", None)
image_num_patches = kwargs.pop("image_num_patches", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values_flat is None and image_embeds is None:
return None
if image_embeds is not None:
if not isinstance(image_embeds, (torch.Tensor, list)):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return InternVLImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds),
)
image_token_id = kwargs["image_token_id"]
assert isinstance(image_token_id, torch.Tensor)
self.img_context_token_id = image_token_id.flatten().unique().item()
if pixel_values_flat is not None:
if not isinstance(pixel_values_flat, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values_flat)}")
if not isinstance(image_num_patches, (torch.Tensor, list)):
raise ValueError("Incorrect type of image_num_patches. "
f"Got type: {type(image_num_patches)}")
pixel_values_flat = flatten_bn(pixel_values_flat, concat=True)
image_num_patches = flatten_bn(image_num_patches, concat=True)
return InternVLImagePixelInputs(
type="pixel_values",
pixel_values_flat=pixel_values_flat,
num_patches=image_num_patches,
resolve_bindings={
"h": self.config.force_image_size,
"w": self.config.force_image_size
},
)
raise AssertionError("This line should be unreachable.")
def _process_image_input(
self,
image_input: InternVLImageInputs,
) -> tuple[torch.Tensor, ...]:
if image_input["type"] == "image_embeds":
return image_input["data"]
assert self.vision_model is not None
image_embeds = self.extract_feature(image_input["pixel_values_flat"])
num_patches = image_input["num_patches"]
# Only one image in the current batch
if len(num_patches) == 1:
return (image_embeds.view(-1,
self.config.text_config.hidden_size), )
# NOTE: Image embeddings are split into separate tensors for each image
# by the size of each embedding.
feature_size = image_embeds.shape[1]
image_embeds = image_embeds.view(-1,
self.config.text_config.hidden_size)
image_feature_sizes = [
num_patches * feature_size for num_patches in num_patches
]
return image_embeds.split(image_feature_sizes)
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key in ("pixel_values_flat",
"image_embeds") and "images" not in modalities:
modalities["images"] = self._parse_and_validate_image_input(
**kwargs)
return modalities
def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None:
self.visual_token_mask = None
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return []
# The result multimodal_embeddings is tuple of tensors, with each
# tensor corresponding to a multimodal data item (image).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
vision_embeddings = self._process_image_input(image_input)
multimodal_embeddings += vision_embeddings
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
*,
is_multimodal: Optional[torch.Tensor] = None,
handle_oov_mm_token: bool = False,
) -> torch.Tensor:
if multimodal_embeddings is not None and len(
multimodal_embeddings) > 0:
self._set_visual_token_mask(input_ids)
# This is to satisfy the type checker for each overload
if multimodal_embeddings is None or is_multimodal is None:
return super().get_input_embeddings(input_ids)
return super().get_input_embeddings(
input_ids,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
handle_oov_mm_token=handle_oov_mm_token,
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> IntermediateTensors:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
forward_kwargs = {
"input_ids": input_ids,
"positions": positions,
"intermediate_tensors": intermediate_tensors,
"inputs_embeds": inputs_embeds,
}
# Only required if the model is mono-architecture
if self.visual_token_mask is not None:
forward_kwargs.update(
{"visual_token_mask": self.visual_token_mask})
self.visual_token_mask = None
hidden_states = self.language_model.model(**forward_kwargs)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
## Ignore registered_buffers
## see https://huggingface.co/nvidia/C-RADIOv2-H/blob/main/input_conditioner.py#L28 # noqa: E501
skip_substrs = ["norm_mean", "norm_std"]
loader = AutoWeightsLoader(self, skip_substrs=skip_substrs)
return loader.load_weights(weights)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="mlp1",
tower_model="vision_model")