vllm/vllm/_ipex_ops.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

229 lines
7.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional, Tuple
import torch
from vllm.logger import init_logger
logger = init_logger(__name__)
try:
import intel_extension_for_pytorch as ipex
except ImportError as e:
logger.warning("Import error msg: %s", e.msg)
class ipex_ops:
@staticmethod
def _reshape_activation_tensor(
x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
num = x.size(0)
d = x.size(1) // 2
x = x.reshape(num, 2, d)
x1, x2 = torch.chunk(x, chunks=2, dim=1)
x1 = x1.reshape(num, d)
x2 = x2.reshape(num, d)
return x1, x2
@staticmethod
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.silu_and_mul(x, out)
@staticmethod
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_fast(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_new(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_quick(x, out)
@staticmethod
def paged_attention_v1(
out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def paged_attention_v2(
out: torch.Tensor,
exp_sum: torch.Tensor,
max_logits: torch.Tensor,
tmp_out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def rotary_embedding(
positions: torch.Tensor, # [batch_size, seq_len]
query: torch.Tensor, # [batch_size, seq_len, num_heads*head_size]
key: torch.Tensor, # [batch_size, seq_len, num_kv_heads*head_size]
head_size: int,
cos_sin_cache: torch.Tensor, # [cos_sin_dim, rot_dim]
is_neox: bool,
) -> None:
rot_dim = cos_sin_cache.size(1)
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim)
@staticmethod
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
key: torch.Tensor, head_size: int,
cos_sin_cache: torch.Tensor, is_neox: bool,
rot_dim: int,
cos_sin_cache_offsets: torch.Tensor) -> None:
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim,
cos_sin_cache_offsets)
@staticmethod
def rms_norm(input: torch.Tensor, weight: torch.Tensor,
epsilon: float) -> torch.Tensor:
return ipex.llm.functional.rms_norm(input, weight, epsilon)
@staticmethod
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor, epsilon: float) -> None:
tmp = ipex.llm.functional.add_rms_norm(residual, input, weight, None,
epsilon, True)
input.copy_(tmp)
@staticmethod
def varlen_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
seqlen_q: torch.Tensor,
seqlen_k: torch.Tensor,
max_seqlen_q: int,
max_seqlen_k: int,
pdropout: float,
softmax_scale: float,
zero_tensors: bool,
is_causal: bool,
return_softmax: bool,
gen_: torch.Generator,
logits_soft_cap: float,
) -> None:
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(), seqlen_k.int(),
max_seqlen_q, max_seqlen_k,
pdropout, softmax_scale,
zero_tensors, is_causal,
return_softmax, gen_,
logits_soft_cap)
@staticmethod
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
) -> None:
assert kv_cache_dtype == "auto"
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slot_mapping)
@staticmethod
def copy_blocks(key_caches: List[torch.Tensor],
value_caches: List[torch.Tensor],
block_mapping: torch.Tensor) -> None:
torch.xpu.copy_blocks( # type: ignore
key_caches,
value_caches,
block_mapping,
)
@staticmethod
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
block_mapping: torch.Tensor) -> None:
torch.xpu.swap_blocks(src, dst, block_mapping) # type: ignore