mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 06:05:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
229 lines
7.7 KiB
Python
229 lines
7.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
except ImportError as e:
|
|
logger.warning("Import error msg: %s", e.msg)
|
|
|
|
|
|
class ipex_ops:
|
|
|
|
@staticmethod
|
|
def _reshape_activation_tensor(
|
|
x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
num = x.size(0)
|
|
d = x.size(1) // 2
|
|
x = x.reshape(num, 2, d)
|
|
x1, x2 = torch.chunk(x, chunks=2, dim=1)
|
|
x1 = x1.reshape(num, d)
|
|
x2 = x2.reshape(num, d)
|
|
return x1, x2
|
|
|
|
@staticmethod
|
|
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
ipex.llm.functional.silu_and_mul(x, out)
|
|
|
|
@staticmethod
|
|
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
ipex.llm.functional.gelu_and_mul(x, out)
|
|
|
|
@staticmethod
|
|
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
ipex.llm.functional.gelu_and_mul(x, out)
|
|
|
|
@staticmethod
|
|
def gelu_fast(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.nn.functional.gelu(x)
|
|
|
|
@staticmethod
|
|
def gelu_new(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.nn.functional.gelu(x)
|
|
|
|
@staticmethod
|
|
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
ipex.llm.functional.gelu_quick(x, out)
|
|
|
|
@staticmethod
|
|
def paged_attention_v1(
|
|
out: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
num_kv_heads: int,
|
|
scale: float,
|
|
block_tables: torch.Tensor,
|
|
context_lens: torch.Tensor,
|
|
block_size: int,
|
|
max_context_len: int,
|
|
alibi_slopes: Optional[torch.Tensor],
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
tp_rank: int = 0,
|
|
blocksparse_local_blocks: int = 0,
|
|
blocksparse_vert_stride: int = 0,
|
|
blocksparse_block_size: int = 64,
|
|
blocksparse_head_sliding_step: int = 0,
|
|
) -> None:
|
|
assert kv_cache_dtype == "auto"
|
|
num_heads = out.size(1)
|
|
num_queries_per_tokens = num_heads // num_kv_heads
|
|
ipex.llm.modules.PagedAttention.single_query_kv_attention(
|
|
out,
|
|
query.contiguous(),
|
|
key_cache.view_as(value_cache),
|
|
value_cache,
|
|
num_queries_per_tokens,
|
|
scale,
|
|
block_tables,
|
|
context_lens,
|
|
block_size,
|
|
max_context_len,
|
|
alibi_slopes,
|
|
)
|
|
|
|
@staticmethod
|
|
def paged_attention_v2(
|
|
out: torch.Tensor,
|
|
exp_sum: torch.Tensor,
|
|
max_logits: torch.Tensor,
|
|
tmp_out: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
num_kv_heads: int,
|
|
scale: float,
|
|
block_tables: torch.Tensor,
|
|
context_lens: torch.Tensor,
|
|
block_size: int,
|
|
max_context_len: int,
|
|
alibi_slopes: Optional[torch.Tensor],
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
tp_rank: int = 0,
|
|
blocksparse_local_blocks: int = 0,
|
|
blocksparse_vert_stride: int = 0,
|
|
blocksparse_block_size: int = 64,
|
|
blocksparse_head_sliding_step: int = 0,
|
|
) -> None:
|
|
assert kv_cache_dtype == "auto"
|
|
num_heads = out.size(1)
|
|
num_queries_per_tokens = num_heads // num_kv_heads
|
|
ipex.llm.modules.PagedAttention.single_query_kv_attention(
|
|
out,
|
|
query.contiguous(),
|
|
key_cache.view_as(value_cache),
|
|
value_cache,
|
|
num_queries_per_tokens,
|
|
scale,
|
|
block_tables,
|
|
context_lens,
|
|
block_size,
|
|
max_context_len,
|
|
alibi_slopes,
|
|
)
|
|
|
|
@staticmethod
|
|
def rotary_embedding(
|
|
positions: torch.Tensor, # [batch_size, seq_len]
|
|
query: torch.Tensor, # [batch_size, seq_len, num_heads*head_size]
|
|
key: torch.Tensor, # [batch_size, seq_len, num_kv_heads*head_size]
|
|
head_size: int,
|
|
cos_sin_cache: torch.Tensor, # [cos_sin_dim, rot_dim]
|
|
is_neox: bool,
|
|
) -> None:
|
|
rot_dim = cos_sin_cache.size(1)
|
|
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
|
|
head_size, cos_sin_cache,
|
|
is_neox, rot_dim)
|
|
|
|
@staticmethod
|
|
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
|
|
key: torch.Tensor, head_size: int,
|
|
cos_sin_cache: torch.Tensor, is_neox: bool,
|
|
rot_dim: int,
|
|
cos_sin_cache_offsets: torch.Tensor) -> None:
|
|
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
|
|
head_size, cos_sin_cache,
|
|
is_neox, rot_dim,
|
|
cos_sin_cache_offsets)
|
|
|
|
@staticmethod
|
|
def rms_norm(input: torch.Tensor, weight: torch.Tensor,
|
|
epsilon: float) -> torch.Tensor:
|
|
return ipex.llm.functional.rms_norm(input, weight, epsilon)
|
|
|
|
@staticmethod
|
|
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
|
|
weight: torch.Tensor, epsilon: float) -> None:
|
|
tmp = ipex.llm.functional.add_rms_norm(residual, input, weight, None,
|
|
epsilon, True)
|
|
input.copy_(tmp)
|
|
|
|
@staticmethod
|
|
def varlen_attention(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
out: torch.Tensor,
|
|
seqlen_q: torch.Tensor,
|
|
seqlen_k: torch.Tensor,
|
|
max_seqlen_q: int,
|
|
max_seqlen_k: int,
|
|
pdropout: float,
|
|
softmax_scale: float,
|
|
zero_tensors: bool,
|
|
is_causal: bool,
|
|
return_softmax: bool,
|
|
gen_: torch.Generator,
|
|
logits_soft_cap: float,
|
|
) -> None:
|
|
ipex.llm.functional.varlen_attention(query.contiguous(),
|
|
key.contiguous(),
|
|
value.contiguous(), out,
|
|
seqlen_q.int(), seqlen_k.int(),
|
|
max_seqlen_q, max_seqlen_k,
|
|
pdropout, softmax_scale,
|
|
zero_tensors, is_causal,
|
|
return_softmax, gen_,
|
|
logits_soft_cap)
|
|
|
|
@staticmethod
|
|
def reshape_and_cache(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
) -> None:
|
|
assert kv_cache_dtype == "auto"
|
|
ipex.llm.modules.PagedAttention.reshape_and_cache(
|
|
key, value, key_cache, value_cache, slot_mapping)
|
|
|
|
@staticmethod
|
|
def copy_blocks(key_caches: List[torch.Tensor],
|
|
value_caches: List[torch.Tensor],
|
|
block_mapping: torch.Tensor) -> None:
|
|
torch.xpu.copy_blocks( # type: ignore
|
|
key_caches,
|
|
value_caches,
|
|
block_mapping,
|
|
)
|
|
|
|
@staticmethod
|
|
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
|
|
block_mapping: torch.Tensor) -> None:
|
|
torch.xpu.swap_blocks(src, dst, block_mapping) # type: ignore
|