mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 15:55:48 +08:00
197 lines
6.1 KiB
Python
197 lines
6.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from functools import lru_cache
|
|
from typing import TYPE_CHECKING, Any, Union, cast
|
|
|
|
from transformers.processing_utils import ProcessorMixin
|
|
from typing_extensions import TypeVar
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig
|
|
|
|
_P = TypeVar("_P", bound=ProcessorMixin, default=ProcessorMixin)
|
|
|
|
|
|
class HashableDict(dict):
|
|
"""
|
|
A dictionary that can be hashed by lru_cache.
|
|
"""
|
|
|
|
# NOTE: pythonic dict is not hashable,
|
|
# we override on it directly for simplicity
|
|
def __hash__(self) -> int: # type: ignore[override]
|
|
return hash(frozenset(self.items()))
|
|
|
|
|
|
class HashableList(list):
|
|
"""
|
|
A list that can be hashed by lru_cache.
|
|
"""
|
|
|
|
def __hash__(self) -> int: # type: ignore[override]
|
|
return hash(tuple(self))
|
|
|
|
|
|
def _merge_mm_kwargs(model_config: "ModelConfig", **kwargs):
|
|
base_kwargs = model_config.mm_processor_kwargs
|
|
if base_kwargs is None:
|
|
base_kwargs = {}
|
|
|
|
merged_kwargs = {**base_kwargs, **kwargs}
|
|
|
|
# NOTE: Pythonic dict is not hashable and will raise unhashable type
|
|
# error when calling `cached_get_processor`, therefore we need to
|
|
# wrap it to a hashable dict.
|
|
for key, value in merged_kwargs.items():
|
|
if isinstance(value, dict):
|
|
merged_kwargs[key] = HashableDict(value)
|
|
if isinstance(value, list):
|
|
merged_kwargs[key] = HashableList(value)
|
|
return merged_kwargs
|
|
|
|
|
|
def get_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
processor_cls: Union[type[_P], tuple[type[_P], ...]] = ProcessorMixin,
|
|
**kwargs: Any,
|
|
) -> _P:
|
|
"""Load a processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers import AutoProcessor
|
|
|
|
processor_factory = (AutoProcessor if processor_cls == ProcessorMixin or
|
|
isinstance(processor_cls, tuple) else processor_cls)
|
|
|
|
try:
|
|
processor = processor_factory.from_pretrained(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
except ValueError as e:
|
|
# If the error pertains to the processor class not existing or not
|
|
# currently being imported, suggest using the --trust-remote-code flag.
|
|
# Unlike AutoTokenizer, AutoProcessor does not separate such errors
|
|
if not trust_remote_code:
|
|
err_msg = (
|
|
"Failed to load the processor. If the processor is "
|
|
"a custom processor not yet available in the HuggingFace "
|
|
"transformers library, consider setting "
|
|
"`trust_remote_code=True` in LLM or using the "
|
|
"`--trust-remote-code` flag in the CLI.")
|
|
raise RuntimeError(err_msg) from e
|
|
else:
|
|
raise e
|
|
|
|
if not isinstance(processor, processor_cls):
|
|
raise TypeError("Invalid type of HuggingFace processor. "
|
|
f"Expected type: {processor_cls}, but "
|
|
f"found type: {type(processor)}")
|
|
|
|
return processor
|
|
|
|
|
|
cached_get_processor = lru_cache(get_processor)
|
|
|
|
|
|
def cached_processor_from_config(
|
|
model_config: "ModelConfig",
|
|
processor_cls: Union[type[_P], tuple[type[_P], ...]] = ProcessorMixin,
|
|
**kwargs: Any,
|
|
) -> _P:
|
|
return cached_get_processor(
|
|
model_config.model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
processor_cls=processor_cls, # type: ignore[arg-type]
|
|
**_merge_mm_kwargs(model_config, **kwargs),
|
|
)
|
|
|
|
|
|
def get_image_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Load an image processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers import AutoImageProcessor
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
try:
|
|
processor = AutoImageProcessor.from_pretrained(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs)
|
|
except ValueError as e:
|
|
# If the error pertains to the processor class not existing or not
|
|
# currently being imported, suggest using the --trust-remote-code flag.
|
|
# Unlike AutoTokenizer, AutoImageProcessor does not separate such errors
|
|
if not trust_remote_code:
|
|
err_msg = (
|
|
"Failed to load the image processor. If the image processor is "
|
|
"a custom processor not yet available in the HuggingFace "
|
|
"transformers library, consider setting "
|
|
"`trust_remote_code=True` in LLM or using the "
|
|
"`--trust-remote-code` flag in the CLI.")
|
|
raise RuntimeError(err_msg) from e
|
|
else:
|
|
raise e
|
|
|
|
return cast(BaseImageProcessor, processor)
|
|
|
|
|
|
cached_get_image_processor = lru_cache(get_image_processor)
|
|
|
|
|
|
def cached_image_processor_from_config(
|
|
model_config: "ModelConfig",
|
|
**kwargs: Any,
|
|
):
|
|
return cached_get_image_processor(
|
|
model_config.model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
**_merge_mm_kwargs(model_config, **kwargs),
|
|
)
|
|
|
|
|
|
def get_video_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Load a video processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
processor = get_processor(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
|
|
return cast(BaseImageProcessor, processor.video_processor)
|
|
|
|
|
|
cached_get_video_processor = lru_cache(get_video_processor)
|
|
|
|
|
|
def cached_video_processor_from_config(
|
|
model_config: "ModelConfig",
|
|
**kwargs: Any,
|
|
):
|
|
return cached_get_video_processor(
|
|
model_config.model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
**_merge_mm_kwargs(model_config, **kwargs),
|
|
)
|