mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 07:35:01 +08:00
Signed-off-by: hjjq <hanjieq@nvidia.com> Signed-off-by: Benjamin Chislett <bchislett@nvidia.com> Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
376 lines
14 KiB
Python
376 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import LlamaConfig
|
|
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig, get_current_vllm_config
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import QKVParallelLinear, ReplicatedLinear
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.llama import LlamaDecoderLayer, LlamaForCausalLM
|
|
from vllm.multimodal.inputs import NestedTensors
|
|
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
get_draft_quant_config,
|
|
maybe_prefix,
|
|
process_eagle_weight,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class LlamaDecoderLayer(LlamaDecoderLayer):
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
config: LlamaConfig | None = None,
|
|
layer_idx: int = 0,
|
|
) -> None:
|
|
super().__init__(vllm_config, prefix=prefix, config=config)
|
|
|
|
config = config or vllm_config.model_config.hf_config
|
|
quant_config = self.get_quant_config(vllm_config)
|
|
|
|
# First layer uses 2*hidden_size (embeds + hidden_states concatenated)
|
|
# Subsequent layers use hidden_size (only hidden_states, no embeds)
|
|
qkv_input_size = 2 * self.hidden_size if layer_idx == 0 else self.hidden_size
|
|
|
|
# override qkv
|
|
self.self_attn.qkv_proj = QKVParallelLinear(
|
|
qkv_input_size,
|
|
self.self_attn.head_dim,
|
|
self.self_attn.total_num_heads,
|
|
self.self_attn.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "qkv_proj"),
|
|
)
|
|
|
|
self.hidden_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.layer_idx = layer_idx
|
|
|
|
if getattr(config, "norm_before_residual", False):
|
|
self._residual_norm = self._norm_before_residual
|
|
else:
|
|
self._residual_norm = self._norm_after_residual
|
|
|
|
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
|
|
"""Use drafter's quantization config instead of verifier's."""
|
|
return get_draft_quant_config(vllm_config)
|
|
|
|
def _norm_before_residual(
|
|
self, hidden_states: torch.Tensor
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
hidden_states = self.hidden_norm(hidden_states)
|
|
residual = hidden_states
|
|
return hidden_states, residual
|
|
|
|
def _norm_after_residual(
|
|
self, hidden_states: torch.Tensor
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
residual = hidden_states
|
|
hidden_states = self.hidden_norm(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
embeds: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if self.layer_idx == 0:
|
|
# First layer: concatenate embeds with hidden_states
|
|
embeds = self.input_layernorm(embeds)
|
|
hidden_states, residual = self._residual_norm(hidden_states=hidden_states)
|
|
hidden_states = torch.cat([embeds, hidden_states], dim=-1)
|
|
else:
|
|
# Subsequent layers: process hidden_states and residuals only
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
# Self Attention
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
|
|
# Fully Connected
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"input_ids": 0,
|
|
"positions": -1,
|
|
"hidden_states": 0,
|
|
"input_embeds": 0,
|
|
}
|
|
)
|
|
class LlamaModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
start_layer_id: int = 0,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
self.vocab_size = self.config.vocab_size
|
|
|
|
# Get drafter's quantization config
|
|
self.quant_config = get_draft_quant_config(vllm_config)
|
|
|
|
eagle_config = getattr(self.config, "eagle_config", None)
|
|
if eagle_config is not None and "use_aux_hidden_state" in eagle_config:
|
|
self.use_aux_hidden_state = eagle_config["use_aux_hidden_state"]
|
|
else:
|
|
self.use_aux_hidden_state = True
|
|
|
|
current_vllm_config = get_current_vllm_config()
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "embed_tokens"),
|
|
)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
LlamaDecoderLayer(
|
|
current_vllm_config,
|
|
prefix=maybe_prefix(prefix, f"layers.{layer_idx + start_layer_id}"),
|
|
config=self.config,
|
|
layer_idx=layer_idx,
|
|
)
|
|
for layer_idx in range(self.config.num_hidden_layers)
|
|
]
|
|
)
|
|
if self.use_aux_hidden_state:
|
|
if hasattr(self.config, "target_hidden_size"):
|
|
fc_input_size = self.config.target_hidden_size * 3
|
|
else:
|
|
fc_input_size = self.config.hidden_size * 3
|
|
self.fc = ReplicatedLinear(
|
|
input_size=fc_input_size,
|
|
output_size=self.config.hidden_size,
|
|
bias=False,
|
|
params_dtype=vllm_config.model_config.dtype,
|
|
quant_config=self.quant_config,
|
|
prefix=maybe_prefix(prefix, "fc"),
|
|
return_bias=False,
|
|
)
|
|
self.norm = RMSNorm(
|
|
self.config.hidden_size,
|
|
eps=self.config.rms_norm_eps,
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
input_embeds: torch.Tensor | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if input_embeds is None:
|
|
input_embeds = self.embed_input_ids(input_ids)
|
|
assert hidden_states.shape[-1] == input_embeds.shape[-1]
|
|
|
|
residual = None
|
|
for layer in self.layers:
|
|
hidden_states, residual = layer(
|
|
positions=positions,
|
|
embeds=input_embeds,
|
|
hidden_states=hidden_states,
|
|
residual=residual,
|
|
)
|
|
hidden_states, hidden_prenorm = self.norm(hidden_states, residual)
|
|
return hidden_states, hidden_prenorm
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "midlayer." in name:
|
|
name = name.replace("midlayer.", "layers.0.")
|
|
# Handle kv cache quantization scales
|
|
if self.quant_config is not None and (
|
|
scale_name := self.quant_config.get_cache_scale(name)
|
|
):
|
|
# Loading kv cache quantization scales
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
loaded_weight = (
|
|
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(scale_name)
|
|
continue
|
|
# Remapping the name FP8 kv-scale
|
|
if "scale" in name:
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Eagle3LlamaForCausalLM(LlamaForCausalLM):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
nn.Module.__init__(self)
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
# Ensure draft_vocab_size is set
|
|
# default to the base vocab size when absent
|
|
if getattr(self.config, "draft_vocab_size", None) is None:
|
|
base_vocab_size = getattr(self.config, "vocab_size", None)
|
|
self.config.draft_vocab_size = base_vocab_size
|
|
target_layer_num = vllm_config.model_config.get_num_layers(
|
|
vllm_config.parallel_config
|
|
)
|
|
|
|
# Store target layer count in draft config for
|
|
# proper layer_types indexing in draft models
|
|
self.config.target_layer_count = target_layer_num
|
|
self.model = LlamaModel(
|
|
vllm_config=vllm_config, prefix="model", start_layer_id=target_layer_num
|
|
)
|
|
|
|
logit_scale = getattr(self.config, "logit_scale", 1.0)
|
|
self.lm_head = ParallelLMHead(
|
|
self.config.draft_vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.config.draft_vocab_size, scale=logit_scale
|
|
)
|
|
self.draft_id_to_target_id = nn.Parameter(
|
|
torch.zeros(self.config.draft_vocab_size, dtype=torch.long),
|
|
requires_grad=False,
|
|
)
|
|
|
|
def embed_input_ids(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: NestedTensors | None = None,
|
|
is_multimodal: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
return self.model(input_ids, positions, hidden_states, inputs_embeds)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
if self.draft_id_to_target_id is None:
|
|
assert logits.shape[1] == self.config.vocab_size, (
|
|
"Expected logits to have shape "
|
|
f"(*, {self.config.vocab_size}), but got {logits.shape}"
|
|
)
|
|
return logits
|
|
|
|
base = torch.arange(self.config.draft_vocab_size, device=logits.device)
|
|
targets = base + self.draft_id_to_target_id
|
|
logits_new = logits.new_full(
|
|
(
|
|
logits.shape[0],
|
|
self.config.vocab_size,
|
|
),
|
|
float("-inf"),
|
|
)
|
|
logits_new[:, targets] = logits
|
|
return logits_new
|
|
|
|
def combine_hidden_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
if not self.model.use_aux_hidden_state:
|
|
return hidden_states
|
|
# combine multiple auxiliary hidden states returned by eagle3
|
|
return self.model.fc(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
model_weights = {}
|
|
includes_draft_id_mapping = False
|
|
includes_embed_tokens = False
|
|
for name, loaded_weight in weights:
|
|
if "t2d" in name:
|
|
continue
|
|
if "d2t" in name:
|
|
name = name.replace("d2t", "draft_id_to_target_id")
|
|
includes_draft_id_mapping = True
|
|
elif "lm_head" not in name:
|
|
name = "model." + name
|
|
if "embed_tokens" in name:
|
|
includes_embed_tokens = True
|
|
model_weights[name] = loaded_weight
|
|
process_eagle_weight(self, name)
|
|
|
|
skip_substrs = []
|
|
if not includes_draft_id_mapping:
|
|
skip_substrs.append("draft_id_to_target_id")
|
|
if not includes_embed_tokens:
|
|
skip_substrs.append("embed_tokens")
|
|
if not self.model.use_aux_hidden_state:
|
|
skip_substrs.append("fc.")
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=None,
|
|
skip_substrs=skip_substrs,
|
|
)
|
|
loader.load_weights(model_weights.items())
|