Qubitium-ModelCloud ee93f4f92a
[CORE] Quantized lm-head Framework (#4442)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: ZX <zx@lbx.dev>
2024-07-02 22:25:17 +00:00

464 lines
18 KiB
Python

# coding=utf-8
# Copyright 2024 The vLLM team.
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Iterable, List, Literal, Optional, Tuple, TypedDict
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from transformers import CLIPVisionConfig, PretrainedConfig
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, VisionLanguageConfig
from vllm.inputs import INPUT_REGISTRY, InputContext
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.clip import CLIPVisionModel
from vllm.model_executor.models.llama import LlamaModel
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.sequence import IntermediateTensors, SamplerOutput
from .clip import dummy_image_for_clip, dummy_seq_data_for_clip
from .interfaces import SupportsVision
logger = init_logger(__name__)
_KEYS_TO_MODIFY_MAPPING = {
"model.vision_embed_tokens": "vision_embed_tokens",
}
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=336,
intermediate_size=4096,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=768)
class Phi3ImageEmbeddingBase(nn.Module):
def __init__(self, wte=None) -> None:
super().__init__()
self.wte = wte
self.layer_idx: int
self.type_feature: str
self.img_processor: CLIPVisionModel
def get_img_features(self,
img_embeds: torch.FloatTensor) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the img_processor
img_feature = self.img_processor(img_embeds,
vision_feature_layer=LAYER_IDX)
if TYPE_FEATURE == "patch":
patch_feature = img_feature[:, 1:]
return patch_feature
if TYPE_FEATURE == "cls_patch":
return img_feature
raise NotImplementedError
# adapted from https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_embedding_phi3_v.py
class Phi3HDImageEmbedding(Phi3ImageEmbeddingBase):
"""Phi3 Image embedding with HD transform."""
def __init__(self,
vision_language_config: VisionLanguageConfig,
config: PretrainedConfig,
wte=None) -> None:
super().__init__(wte)
self.image_token_id = vision_language_config.image_token_id
# n_embed or hidden_size
hidden_size = config.n_embd if hasattr(
config, 'n_embd') else config.hidden_size
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
self.img_processor = CLIPVisionModel(clip_config)
image_dim_out = config.img_processor['image_dim_out']
self.num_img_tokens = config.img_processor['num_img_tokens']
self.image_dim_out = image_dim_out
# global_gn and sub_gn for hd transform, serves as line separator
self.use_hd_transform = config.embd_layer.get('use_hd_transform',
False)
self.with_learnable_separator = config.embd_layer.get(
'with_learnable_separator', False)
self.hd_transform_order = config.embd_layer.get(
'hd_transform_order', 'glb_sub')
# with_hd_transform and with_learnable_separator should have same value
assert self.use_hd_transform and self.with_learnable_separator
# 1024 * 4, merge spatial to channel dimension
self.glb_GN = nn.Parameter(torch.empty([1, 1, self.image_dim_out * 4]))
self.sub_GN = nn.Parameter(
torch.empty([1, 1, 1, self.image_dim_out * 4]))
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
for _ in range(1, depth):
layers.extend(
[nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
self.vocab_size = config.vocab_size
self.layer_idx = config.img_processor.get('layer_idx', -2)
self.type_feature = config.img_processor.get('type_feature', 'patch')
def forward(self, input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
image_sizes: torch.Tensor) -> torch.FloatTensor:
"""process and merge text embeddings with image embeddings."""
# (batch_size, max_num_crops, 3, height, width)
img_embeds = pixel_values
# (batch_size, 2)
img_sizes = image_sizes
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
positions = torch.nonzero(input_ids == self.image_token_id)
select = False
target_dtype = self.img_projection[0].bias.dtype
if len(positions.tolist()) > 0:
# if self.use_hd_transform and img_sizes:
# img_embeds: (num_images, max_num_crops, 3, H, W)
# img_sizes: (num_images, 2).view(1, -1)
bs = img_embeds.shape[0]
# Nx(HW)xC
img_features = self.get_img_features(img_embeds.flatten(0, 1))
base_feat_height = base_feat_width = int(
img_features.shape[1]**0.5)
# bs x max_num_crops x (24x24) x C
img_features = img_features.view(
bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
C = self.image_dim_out
H = base_feat_height
output_imgs = []
output_len = []
for _bs in range(bs):
h, w = img_sizes[_bs]
h = h // 336
w = w // 336
B_ = h * w
# 1 x (24x24) x 1024
global_img_feature = img_features[_bs, :1]
# 1 x 12 x 12 x 4096
glb_img = global_img_feature \
.reshape(1, H // 2, 2, H // 2, 2,C) \
.permute(0, 1, 3, 2, 4, 5) \
.reshape(1, H // 2, H // 2, 4 * C)
temp_glb_GN = self.sub_GN.repeat(1, H // 2, 1, 1)
# 1 x 156 x 4096
glb_img = torch.cat([glb_img, temp_glb_GN],
dim=2).reshape(1, -1, 4 * C)
# (max_num_crops-1) x (12x12) x C
sub_img = img_features[_bs, 1:]
# 16x574x1024
# get rid of padding sub_img
sub_img = sub_img[:B_]
sub_img = sub_img.reshape(B_, H // 2, 2, H // 2, 2, C) \
.permute(0, 1, 3, 2, 4, 5).reshape(B_, -1, 4 * C)
sub_img = sub_img.reshape(1, h, w, 12, 12, -1) \
.permute(0, 1, 3, 2, 4, 5) \
.reshape(1, h * 12, w * 12, 4 * C)
temp_sub_GN = self.sub_GN.repeat(1, h * 12, 1, 1)
sub_img = torch.cat([sub_img, temp_sub_GN],
dim=2).reshape(1, -1, 4 * C)
# (1, num_img_tokens, 1024*4)
# glb + sub
if self.hd_transform_order == 'glb_sub':
output_imgs.append(
torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
elif self.hd_transform_order == 'sub_glb':
output_imgs.append(
torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
temp_len = int((h * w + 1) * 144 + 1 + (h + 1) * 12)
output_len.append(temp_len)
num_img_tokens = output_len
img_set_tensor = []
for _output_img in output_imgs:
img_feature_proj = self.img_projection(
_output_img.to(target_dtype))
img_set_tensor.append(img_feature_proj)
select = True
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
hidden_states = self.wte(input_ids)
if select:
idx = 0
for i, cnt in enumerate(num_img_tokens):
hidden_states[positions[idx, 0],
positions[idx, 1]:positions[idx, 1] +
cnt] = (img_set_tensor[i].to(
hidden_states.dtype))
idx += cnt
return hidden_states.squeeze(0)
class Phi3VImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""Shape: (batch_size, 1 + num_patches, num_channels, height, width)"""
image_sizes: torch.Tensor
"""Shape: (batch_size, 2)"""
def _get_phi3v_image_feature_size(
*,
input_height: int,
input_width: int,
) -> int:
h, w = input_height, input_width
# https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L178
return (h // 336 * w // 336 + 1) * 144 + 1 + (h // 336 + 1) * 12
def dummy_data_for_phi3v(ctx: InputContext, seq_len: int):
multimodal_config = ctx.get_multimodal_config()
#TODO: change the logic for dummy data to support dynamic shape
_, _, dummy_height, dummy_width = multimodal_config.image_input_shape
image_feature_size = _get_phi3v_image_feature_size(
input_height=dummy_height,
input_width=dummy_width,
)
seq_data = dummy_seq_data_for_clip(
CLIP_VIT_LARGE_PATCH14_336_CONFIG,
seq_len,
image_token_id=32044,
image_feature_size_override=image_feature_size,
)
mm_data = dummy_image_for_clip(
CLIP_VIT_LARGE_PATCH14_336_CONFIG,
image_width_override=dummy_width,
image_height_override=dummy_height,
)
return seq_data, mm_data
# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py
def _calc_padded_size(*, width: int, height: int, padding_unit: int = 336):
target_height = int(np.ceil(height / padding_unit) * padding_unit)
top_padding = int((target_height - height) / 2)
bottom_padding = target_height - height - top_padding
padded_width = width
padded_height = height + top_padding + bottom_padding
return padded_width, padded_height
# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py
def _calc_hd_transform_size(*, width: int, height: int, hd_num: int = 16):
transposed = False
if width < height:
width, height = height, width
transposed = True
ratio = width / height
scale = 1
while scale * np.ceil(scale / ratio) <= hd_num:
scale += 1
scale -= 1
new_width = int(scale * 336)
new_height = int(new_width / ratio)
padded_width, padded_height = _calc_padded_size(width=new_width,
height=new_height)
if transposed:
padded_width, padded_height = padded_height, padded_width
return padded_width, padded_height
def _image_processor(ctx: InputContext,
image: object) -> Dict[str, torch.Tensor]:
if isinstance(image, Image.Image):
# Temporary patch before dynamic number of image tokens is supported
_, _, h, w = ctx.get_multimodal_config().image_input_shape
if (w, h) != _calc_hd_transform_size(width=image.width,
height=image.height):
logger.warning(
"Dynamic image shape is currently not supported. "
"Resizing input image to (%d, %d).", w, h)
image = image.resize((w, h))
return MULTIMODAL_REGISTRY._get_plugin("image") \
._default_input_mapper(ctx, image)
raise TypeError(f"Invalid type for 'image': {type(image)}")
@MULTIMODAL_REGISTRY.register_image_input_mapper(_image_processor)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_phi3v)
class Phi3VForCausalLM(nn.Module, SupportsVision):
def __init__(self,
config: PretrainedConfig,
vlm_config: VisionLanguageConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.vlm_config = vlm_config
self.model = LlamaModel(config, cache_config, quant_config)
self.vision_embed_tokens = Phi3HDImageEmbedding(
vlm_config, config, self.model.embed_tokens)
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[Phi3VImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_sizes = kwargs.pop("image_sizes", None)
if pixel_values is not None and image_sizes is not None:
return Phi3VImagePixelInputs(type="pixel_values",
data=pixel_values,
image_sizes=image_sizes)
return None
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object):
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
inputs_embeds = self.vision_embed_tokens(
input_ids, image_input["data"], image_input["image_sizes"])
input_ids = None
else:
inputs_embeds = None
hidden_states = self.model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
# post_layernorm is not needed in CLIPVisionModel
if "vision_model.post_layernorm" in name:
continue
for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in name:
name = name.replace(key_to_modify, new_key)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# We only do sharding for language model
# and not vision model for now.
if "vision_embed_tokens" in name and self.vision_embed_tokens:
continue
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)