mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 20:26:01 +08:00
174 lines
5.3 KiB
Python
174 lines
5.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from http import HTTPStatus
|
|
from typing import cast
|
|
|
|
import numpy as np
|
|
from fastapi import Request
|
|
from typing_extensions import override
|
|
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
from vllm.entrypoints.openai.protocol import (
|
|
ClassificationData,
|
|
ClassificationRequest,
|
|
ClassificationResponse,
|
|
ErrorResponse,
|
|
UsageInfo,
|
|
)
|
|
from vllm.entrypoints.openai.serving_engine import (
|
|
ClassificationServeContext,
|
|
OpenAIServing,
|
|
ServeContext,
|
|
)
|
|
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
|
from vllm.entrypoints.renderer import RenderConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.outputs import ClassificationOutput, PoolingRequestOutput
|
|
from vllm.pooling_params import PoolingParams
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class ClassificationMixin(OpenAIServing):
|
|
@override
|
|
async def _preprocess(
|
|
self,
|
|
ctx: ServeContext,
|
|
) -> ErrorResponse | None:
|
|
"""
|
|
Process classification inputs: tokenize text, resolve adapters,
|
|
and prepare model-specific inputs.
|
|
"""
|
|
ctx = cast(ClassificationServeContext, ctx)
|
|
if isinstance(ctx.request.input, str) and not ctx.request.input:
|
|
return self.create_error_response(
|
|
"Input cannot be empty for classification",
|
|
status_code=HTTPStatus.BAD_REQUEST,
|
|
)
|
|
|
|
if isinstance(ctx.request.input, list) and len(ctx.request.input) == 0:
|
|
return None
|
|
|
|
try:
|
|
ctx.tokenizer = await self.engine_client.get_tokenizer()
|
|
|
|
renderer = self._get_renderer(ctx.tokenizer)
|
|
ctx.engine_prompts = await renderer.render_prompt(
|
|
prompt_or_prompts=ctx.request.input,
|
|
config=self._build_render_config(ctx.request),
|
|
)
|
|
|
|
return None
|
|
|
|
except (ValueError, TypeError) as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
|
|
@override
|
|
def _build_response(
|
|
self,
|
|
ctx: ServeContext,
|
|
) -> ClassificationResponse | ErrorResponse:
|
|
"""
|
|
Convert model outputs to a formatted classification response
|
|
with probabilities and labels.
|
|
"""
|
|
ctx = cast(ClassificationServeContext, ctx)
|
|
items: list[ClassificationData] = []
|
|
num_prompt_tokens = 0
|
|
|
|
final_res_batch_checked = cast(list[PoolingRequestOutput], ctx.final_res_batch)
|
|
|
|
for idx, final_res in enumerate(final_res_batch_checked):
|
|
classify_res = ClassificationOutput.from_base(final_res.outputs)
|
|
|
|
probs = classify_res.probs
|
|
predicted_index = int(np.argmax(probs))
|
|
label = getattr(self.model_config.hf_config, "id2label", {}).get(
|
|
predicted_index
|
|
)
|
|
|
|
item = ClassificationData(
|
|
index=idx,
|
|
label=label,
|
|
probs=probs,
|
|
num_classes=len(probs),
|
|
)
|
|
|
|
items.append(item)
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
total_tokens=num_prompt_tokens,
|
|
)
|
|
|
|
return ClassificationResponse(
|
|
id=ctx.request_id,
|
|
created=ctx.created_time,
|
|
model=ctx.model_name,
|
|
data=items,
|
|
usage=usage,
|
|
)
|
|
|
|
def _build_render_config(self, request: ClassificationRequest) -> RenderConfig:
|
|
return RenderConfig(
|
|
max_length=self.max_model_len,
|
|
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
|
)
|
|
|
|
|
|
class ServingClassification(ClassificationMixin):
|
|
request_id_prefix = "classify"
|
|
|
|
def __init__(
|
|
self,
|
|
engine_client: EngineClient,
|
|
models: OpenAIServingModels,
|
|
*,
|
|
request_logger: RequestLogger | None,
|
|
log_error_stack: bool = False,
|
|
) -> None:
|
|
super().__init__(
|
|
engine_client=engine_client,
|
|
models=models,
|
|
request_logger=request_logger,
|
|
log_error_stack=log_error_stack,
|
|
)
|
|
|
|
async def create_classify(
|
|
self,
|
|
request: ClassificationRequest,
|
|
raw_request: Request,
|
|
) -> ClassificationResponse | ErrorResponse:
|
|
model_name = self.models.model_name()
|
|
request_id = f"{self.request_id_prefix}-{self._base_request_id(raw_request)}"
|
|
|
|
ctx = ClassificationServeContext(
|
|
request=request,
|
|
raw_request=raw_request,
|
|
model_name=model_name,
|
|
request_id=request_id,
|
|
)
|
|
|
|
return await super().handle(ctx) # type: ignore
|
|
|
|
@override
|
|
def _create_pooling_params(
|
|
self,
|
|
ctx: ClassificationServeContext,
|
|
) -> PoolingParams | ErrorResponse:
|
|
pooling_params = super()._create_pooling_params(ctx)
|
|
if isinstance(pooling_params, ErrorResponse):
|
|
return pooling_params
|
|
|
|
try:
|
|
pooling_params.verify("classify", self.model_config)
|
|
except ValueError as e:
|
|
return self.create_error_response(str(e))
|
|
|
|
return pooling_params
|