vllm/vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py
Chauncey c02fccdbd2
[Refactor] Lazy import tool_parser (#27974)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-11-04 10:10:10 +08:00

391 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
from collections.abc import Sequence
from random import choices
from string import ascii_letters, digits
import partial_json_parser
import regex as re
from partial_json_parser.core.options import Allow
from pydantic import Field
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest,
DeltaFunctionCall,
DeltaMessage,
DeltaToolCall,
ExtractedToolCallInformation,
FunctionCall,
ToolCall,
)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser,
)
from vllm.entrypoints.openai.tool_parsers.utils import extract_intermediate_diff
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
logger = init_logger(__name__)
ALPHANUMERIC = ascii_letters + digits
class MistralToolCall(ToolCall):
id: str = Field(default_factory=lambda: MistralToolCall.generate_random_id())
@staticmethod
def generate_random_id():
# Mistral Tool Call Ids must be alphanumeric with a length of 9.
# https://github.com/mistralai/mistral-common/blob/21ee9f6cee3441e9bb1e6ed2d10173f90bd9b94b/src/mistral_common/protocol/instruct/validator.py#L299
return "".join(choices(ALPHANUMERIC, k=9))
@staticmethod
def is_valid_id(id: str) -> bool:
return id.isalnum() and len(id) == 9
def _is_fn_name_regex_support(model_tokenizer: AnyTokenizer) -> bool:
return (
isinstance(model_tokenizer, MistralTokenizer) and model_tokenizer.version >= 11
)
class MistralToolParser(ToolParser):
"""
Tool call parser for Mistral 7B Instruct v0.3, intended for use with
- [`mistral_common`](https://github.com/mistralai/mistral-common/)
- the examples/tool_chat_template_mistral.jinja template.
Used when --enable-auto-tool-choice --tool-call-parser mistral are all set
"""
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
if not isinstance(self.model_tokenizer, MistralTokenizer):
logger.info("Non-Mistral tokenizer detected when using a Mistral model...")
# initialize properties used for state when parsing tool calls in
# streaming mode
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[
str
] = [] # map what has been streamed for each tool so far to a list
self.bot_token = "[TOOL_CALLS]"
self.bot_token_id = self.vocab.get(self.bot_token)
self.tool_call_regex = re.compile(r"\[{.*}\]", re.DOTALL)
if _is_fn_name_regex_support(self.model_tokenizer):
self.fn_name_regex = re.compile(
r"([a-zA-Z0-9_-]+)(\{[\s\S]*?\})(?=\s*$|,|\s)", re.DOTALL
)
else:
self.fn_name_regex = None
if self.bot_token_id is None:
raise RuntimeError(
"Mistral Tool Parser could not locate the tool call token in "
"the tokenizer!"
)
def adjust_request(self, request: ChatCompletionRequest) -> ChatCompletionRequest:
request = super().adjust_request(request)
if (
not isinstance(self.model_tokenizer, MistralTokenizer)
and request.tools
and request.tool_choice != "none"
):
# Do not skip special tokens when using chat template
# with Mistral parser as TOOL_CALL token is needed
# for tool detection.
# Note: we don't want skip_special_tokens=False
# with MistralTokenizer as it is incompatible
request.skip_special_tokens = False
return request
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
"""
Extract the tool calls from a complete model response. Requires
find-and-replacing single quotes with double quotes for JSON parsing,
make sure your tool call arguments don't ever include quotes!
"""
# case -- if a tool call token is not present, return a text response
if self.bot_token not in model_output:
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=model_output
)
# first remove the BOT token
tool_content = model_output.replace(self.bot_token, "").strip()
try:
# we first try to directly load the json as parsing very nested
# jsons is difficult
try:
if self.fn_name_regex:
matches = self.fn_name_regex.findall(tool_content)
function_call_arr = []
for match in matches:
fn_name = match[0]
args = match[1]
# fn_name is encoded outside serialized json dump
# only arguments are serialized
function_call_arr.append(
{"name": fn_name, "arguments": json.loads(args)}
)
else:
function_call_arr = json.loads(tool_content)
except json.JSONDecodeError:
# use a regex to find the part corresponding to the tool call.
# NOTE: This use case should not happen if the model is trained
# correctly. It's an easy possible fix so it's included, but
# can be brittle for very complex / highly nested tool calls
raw_tool_call = self.tool_call_regex.findall(tool_content)[0]
function_call_arr = json.loads(raw_tool_call)
# Tool Call
tool_calls: list[MistralToolCall] = [
MistralToolCall(
type="function",
function=FunctionCall(
name=raw_function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(
raw_function_call["arguments"], ensure_ascii=False
),
),
)
for raw_function_call in function_call_arr
]
# get any content before the tool call
content = model_output.split(self.bot_token)[0]
return ExtractedToolCallInformation(
tools_called=True,
tool_calls=tool_calls,
content=content if len(content) > 0 else None,
)
except Exception:
logger.exception("Error in extracting tool call from response.")
# return information to just treat the tool call as regular JSON
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=tool_content
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> DeltaMessage | None:
# if the tool call token is not in the tokens generated so far, append
# output to contents since it's not a tool
if self.bot_token not in current_text:
return DeltaMessage(content=delta_text)
# if the tool call token ID IS in the tokens generated so far, that
# means we're parsing as tool calls now
# handle if we detected the BOT token which means the start of tool
# calling
if self.bot_token_id in delta_token_ids and len(delta_token_ids) == 1:
# if it's the only token, return None, so we don't send a chat
# completion any don't send a control token
return None
# bit mask flags for partial JSON parsing. If the name hasn't been
# sent yet, don't allow sending
# an incomplete string since OpenAI only ever (as far as I have
# seen) allows sending the entire tool/ function name at once.
flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
try:
# replace BOT token with empty string, and convert single quotes
# to double to allow parsing as JSON since mistral uses single
# quotes instead of double for tool calls
parsable_arr = current_text.split(self.bot_token)[-1]
# tool calls are generated in an array, so do partial JSON
# parsing on the entire array
try:
tool_call_arr: list[dict] = partial_json_parser.loads(
parsable_arr, flags
)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug("not enough tokens to parse into JSON yet")
return None
# select as the current tool call the one we're on the state at
current_tool_call: dict = (
tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {}
)
# case -- if no tokens have been streamed for the tool, e.g.
# only the array brackets, stream nothing
if len(tool_call_arr) == 0:
return None
# case: we are starting a new tool in the array
# -> array has > 0 length AND length has moved past cursor
elif (
len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1
):
# if we're moving on to a new call, first make sure we
# haven't missed anything in the previous one that was
# auto-generated due to JSON completions, but wasn't
# streamed to the client yet.
if self.current_tool_id >= 0:
diff: str | None = current_tool_call.get("arguments")
if diff:
diff = json.dumps(diff, ensure_ascii=False).replace(
self.streamed_args_for_tool[self.current_tool_id], ""
)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += diff
else:
delta = None
else:
delta = None
# re-set stuff pertaining to progress in the current tool
self.current_tool_id = len(tool_call_arr) - 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("starting on new tool %d", self.current_tool_id)
return delta
# case: update an existing tool - this is handled below
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
if not self.current_tool_name_sent:
function_name = current_tool_call.get("name")
if function_name:
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=MistralToolCall.generate_random_id(),
function=DeltaFunctionCall(
name=function_name
).model_dump(exclude_none=True),
)
]
)
self.current_tool_name_sent = True
else:
delta = None
# now we know we're on the same tool call and we're streaming
# arguments
else:
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
"arguments"
)
cur_arguments = current_tool_call.get("arguments")
new_text = delta_text.replace("'", '"')
if '"}' in new_text:
new_text = new_text[: new_text.rindex('"}')]
if not cur_arguments and not prev_arguments:
delta = None
elif not cur_arguments and prev_arguments:
logger.error(
"INVARIANT - impossible to have arguments reset mid-arguments"
)
delta = None
elif cur_arguments and not prev_arguments:
cur_arguments_json = json.dumps(cur_arguments, ensure_ascii=False)[
:-2
]
logger.debug("finding %s in %s", new_text, cur_arguments_json)
if new_text not in cur_arguments_json:
return None
arguments_delta = cur_arguments_json[
: cur_arguments_json.rindex(new_text) + len(new_text)
]
logger.debug(
"First tokens in arguments received: %s", arguments_delta
)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=arguments_delta
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += arguments_delta
elif cur_arguments and prev_arguments:
cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
logger.debug(
"Searching for diff between \n%s\n%s",
cur_args_json,
prev_args_json,
)
argument_diff = extract_intermediate_diff(
cur_args_json, prev_args_json
)
logger.debug("got arguments diff: %s", argument_diff)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += argument_diff
else:
# try parsing it with regular JSON - if it works we're
# at the end, and we need to send the difference between
# tokens streamed so far and the valid JSON
delta = None
# check to see if the name is defined and has been sent. if so,
# stream the name - otherwise keep waiting
# finish by setting old and returning None as base case
self.prev_tool_call_arr = tool_call_arr
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
logger.debug(
"Skipping chunk as a result of tool streaming extraction error"
)
return None