mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 23:15:49 +08:00
391 lines
16 KiB
Python
391 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import json
|
|
from collections.abc import Sequence
|
|
from random import choices
|
|
from string import ascii_letters, digits
|
|
|
|
import partial_json_parser
|
|
import regex as re
|
|
from partial_json_parser.core.options import Allow
|
|
from pydantic import Field
|
|
|
|
from vllm.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
DeltaFunctionCall,
|
|
DeltaMessage,
|
|
DeltaToolCall,
|
|
ExtractedToolCallInformation,
|
|
FunctionCall,
|
|
ToolCall,
|
|
)
|
|
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
|
|
ToolParser,
|
|
)
|
|
from vllm.entrypoints.openai.tool_parsers.utils import extract_intermediate_diff
|
|
from vllm.logger import init_logger
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
ALPHANUMERIC = ascii_letters + digits
|
|
|
|
|
|
class MistralToolCall(ToolCall):
|
|
id: str = Field(default_factory=lambda: MistralToolCall.generate_random_id())
|
|
|
|
@staticmethod
|
|
def generate_random_id():
|
|
# Mistral Tool Call Ids must be alphanumeric with a length of 9.
|
|
# https://github.com/mistralai/mistral-common/blob/21ee9f6cee3441e9bb1e6ed2d10173f90bd9b94b/src/mistral_common/protocol/instruct/validator.py#L299
|
|
return "".join(choices(ALPHANUMERIC, k=9))
|
|
|
|
@staticmethod
|
|
def is_valid_id(id: str) -> bool:
|
|
return id.isalnum() and len(id) == 9
|
|
|
|
|
|
def _is_fn_name_regex_support(model_tokenizer: AnyTokenizer) -> bool:
|
|
return (
|
|
isinstance(model_tokenizer, MistralTokenizer) and model_tokenizer.version >= 11
|
|
)
|
|
|
|
|
|
class MistralToolParser(ToolParser):
|
|
"""
|
|
Tool call parser for Mistral 7B Instruct v0.3, intended for use with
|
|
- [`mistral_common`](https://github.com/mistralai/mistral-common/)
|
|
- the examples/tool_chat_template_mistral.jinja template.
|
|
|
|
Used when --enable-auto-tool-choice --tool-call-parser mistral are all set
|
|
"""
|
|
|
|
def __init__(self, tokenizer: AnyTokenizer):
|
|
super().__init__(tokenizer)
|
|
|
|
if not isinstance(self.model_tokenizer, MistralTokenizer):
|
|
logger.info("Non-Mistral tokenizer detected when using a Mistral model...")
|
|
|
|
# initialize properties used for state when parsing tool calls in
|
|
# streaming mode
|
|
self.prev_tool_call_arr: list[dict] = []
|
|
self.current_tool_id: int = -1
|
|
self.current_tool_name_sent: bool = False
|
|
self.streamed_args_for_tool: list[
|
|
str
|
|
] = [] # map what has been streamed for each tool so far to a list
|
|
self.bot_token = "[TOOL_CALLS]"
|
|
self.bot_token_id = self.vocab.get(self.bot_token)
|
|
self.tool_call_regex = re.compile(r"\[{.*}\]", re.DOTALL)
|
|
if _is_fn_name_regex_support(self.model_tokenizer):
|
|
self.fn_name_regex = re.compile(
|
|
r"([a-zA-Z0-9_-]+)(\{[\s\S]*?\})(?=\s*$|,|\s)", re.DOTALL
|
|
)
|
|
else:
|
|
self.fn_name_regex = None
|
|
|
|
if self.bot_token_id is None:
|
|
raise RuntimeError(
|
|
"Mistral Tool Parser could not locate the tool call token in "
|
|
"the tokenizer!"
|
|
)
|
|
|
|
def adjust_request(self, request: ChatCompletionRequest) -> ChatCompletionRequest:
|
|
request = super().adjust_request(request)
|
|
if (
|
|
not isinstance(self.model_tokenizer, MistralTokenizer)
|
|
and request.tools
|
|
and request.tool_choice != "none"
|
|
):
|
|
# Do not skip special tokens when using chat template
|
|
# with Mistral parser as TOOL_CALL token is needed
|
|
# for tool detection.
|
|
# Note: we don't want skip_special_tokens=False
|
|
# with MistralTokenizer as it is incompatible
|
|
request.skip_special_tokens = False
|
|
return request
|
|
|
|
def extract_tool_calls(
|
|
self,
|
|
model_output: str,
|
|
request: ChatCompletionRequest,
|
|
) -> ExtractedToolCallInformation:
|
|
"""
|
|
Extract the tool calls from a complete model response. Requires
|
|
find-and-replacing single quotes with double quotes for JSON parsing,
|
|
make sure your tool call arguments don't ever include quotes!
|
|
"""
|
|
|
|
# case -- if a tool call token is not present, return a text response
|
|
if self.bot_token not in model_output:
|
|
return ExtractedToolCallInformation(
|
|
tools_called=False, tool_calls=[], content=model_output
|
|
)
|
|
|
|
# first remove the BOT token
|
|
tool_content = model_output.replace(self.bot_token, "").strip()
|
|
|
|
try:
|
|
# we first try to directly load the json as parsing very nested
|
|
# jsons is difficult
|
|
try:
|
|
if self.fn_name_regex:
|
|
matches = self.fn_name_regex.findall(tool_content)
|
|
|
|
function_call_arr = []
|
|
for match in matches:
|
|
fn_name = match[0]
|
|
args = match[1]
|
|
|
|
# fn_name is encoded outside serialized json dump
|
|
# only arguments are serialized
|
|
function_call_arr.append(
|
|
{"name": fn_name, "arguments": json.loads(args)}
|
|
)
|
|
else:
|
|
function_call_arr = json.loads(tool_content)
|
|
except json.JSONDecodeError:
|
|
# use a regex to find the part corresponding to the tool call.
|
|
# NOTE: This use case should not happen if the model is trained
|
|
# correctly. It's an easy possible fix so it's included, but
|
|
# can be brittle for very complex / highly nested tool calls
|
|
raw_tool_call = self.tool_call_regex.findall(tool_content)[0]
|
|
function_call_arr = json.loads(raw_tool_call)
|
|
|
|
# Tool Call
|
|
tool_calls: list[MistralToolCall] = [
|
|
MistralToolCall(
|
|
type="function",
|
|
function=FunctionCall(
|
|
name=raw_function_call["name"],
|
|
# function call args are JSON but as a string
|
|
arguments=json.dumps(
|
|
raw_function_call["arguments"], ensure_ascii=False
|
|
),
|
|
),
|
|
)
|
|
for raw_function_call in function_call_arr
|
|
]
|
|
|
|
# get any content before the tool call
|
|
content = model_output.split(self.bot_token)[0]
|
|
return ExtractedToolCallInformation(
|
|
tools_called=True,
|
|
tool_calls=tool_calls,
|
|
content=content if len(content) > 0 else None,
|
|
)
|
|
|
|
except Exception:
|
|
logger.exception("Error in extracting tool call from response.")
|
|
# return information to just treat the tool call as regular JSON
|
|
return ExtractedToolCallInformation(
|
|
tools_called=False, tool_calls=[], content=tool_content
|
|
)
|
|
|
|
def extract_tool_calls_streaming(
|
|
self,
|
|
previous_text: str,
|
|
current_text: str,
|
|
delta_text: str,
|
|
previous_token_ids: Sequence[int],
|
|
current_token_ids: Sequence[int],
|
|
delta_token_ids: Sequence[int],
|
|
request: ChatCompletionRequest,
|
|
) -> DeltaMessage | None:
|
|
# if the tool call token is not in the tokens generated so far, append
|
|
# output to contents since it's not a tool
|
|
if self.bot_token not in current_text:
|
|
return DeltaMessage(content=delta_text)
|
|
|
|
# if the tool call token ID IS in the tokens generated so far, that
|
|
# means we're parsing as tool calls now
|
|
|
|
# handle if we detected the BOT token which means the start of tool
|
|
# calling
|
|
if self.bot_token_id in delta_token_ids and len(delta_token_ids) == 1:
|
|
# if it's the only token, return None, so we don't send a chat
|
|
# completion any don't send a control token
|
|
return None
|
|
|
|
# bit mask flags for partial JSON parsing. If the name hasn't been
|
|
# sent yet, don't allow sending
|
|
# an incomplete string since OpenAI only ever (as far as I have
|
|
# seen) allows sending the entire tool/ function name at once.
|
|
flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
|
|
try:
|
|
# replace BOT token with empty string, and convert single quotes
|
|
# to double to allow parsing as JSON since mistral uses single
|
|
# quotes instead of double for tool calls
|
|
parsable_arr = current_text.split(self.bot_token)[-1]
|
|
|
|
# tool calls are generated in an array, so do partial JSON
|
|
# parsing on the entire array
|
|
try:
|
|
tool_call_arr: list[dict] = partial_json_parser.loads(
|
|
parsable_arr, flags
|
|
)
|
|
except partial_json_parser.core.exceptions.MalformedJSON:
|
|
logger.debug("not enough tokens to parse into JSON yet")
|
|
return None
|
|
|
|
# select as the current tool call the one we're on the state at
|
|
|
|
current_tool_call: dict = (
|
|
tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {}
|
|
)
|
|
|
|
# case -- if no tokens have been streamed for the tool, e.g.
|
|
# only the array brackets, stream nothing
|
|
if len(tool_call_arr) == 0:
|
|
return None
|
|
|
|
# case: we are starting a new tool in the array
|
|
# -> array has > 0 length AND length has moved past cursor
|
|
elif (
|
|
len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1
|
|
):
|
|
# if we're moving on to a new call, first make sure we
|
|
# haven't missed anything in the previous one that was
|
|
# auto-generated due to JSON completions, but wasn't
|
|
# streamed to the client yet.
|
|
if self.current_tool_id >= 0:
|
|
diff: str | None = current_tool_call.get("arguments")
|
|
|
|
if diff:
|
|
diff = json.dumps(diff, ensure_ascii=False).replace(
|
|
self.streamed_args_for_tool[self.current_tool_id], ""
|
|
)
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
function=DeltaFunctionCall(
|
|
arguments=diff
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
self.streamed_args_for_tool[self.current_tool_id] += diff
|
|
else:
|
|
delta = None
|
|
else:
|
|
delta = None
|
|
# re-set stuff pertaining to progress in the current tool
|
|
self.current_tool_id = len(tool_call_arr) - 1
|
|
self.current_tool_name_sent = False
|
|
self.streamed_args_for_tool.append("")
|
|
logger.debug("starting on new tool %d", self.current_tool_id)
|
|
return delta
|
|
|
|
# case: update an existing tool - this is handled below
|
|
|
|
# if the current tool name hasn't been sent, send if available
|
|
# - otherwise send nothing
|
|
if not self.current_tool_name_sent:
|
|
function_name = current_tool_call.get("name")
|
|
if function_name:
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
type="function",
|
|
id=MistralToolCall.generate_random_id(),
|
|
function=DeltaFunctionCall(
|
|
name=function_name
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
self.current_tool_name_sent = True
|
|
else:
|
|
delta = None
|
|
|
|
# now we know we're on the same tool call and we're streaming
|
|
# arguments
|
|
else:
|
|
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
|
|
"arguments"
|
|
)
|
|
cur_arguments = current_tool_call.get("arguments")
|
|
|
|
new_text = delta_text.replace("'", '"')
|
|
if '"}' in new_text:
|
|
new_text = new_text[: new_text.rindex('"}')]
|
|
|
|
if not cur_arguments and not prev_arguments:
|
|
delta = None
|
|
elif not cur_arguments and prev_arguments:
|
|
logger.error(
|
|
"INVARIANT - impossible to have arguments reset mid-arguments"
|
|
)
|
|
delta = None
|
|
elif cur_arguments and not prev_arguments:
|
|
cur_arguments_json = json.dumps(cur_arguments, ensure_ascii=False)[
|
|
:-2
|
|
]
|
|
logger.debug("finding %s in %s", new_text, cur_arguments_json)
|
|
|
|
if new_text not in cur_arguments_json:
|
|
return None
|
|
arguments_delta = cur_arguments_json[
|
|
: cur_arguments_json.rindex(new_text) + len(new_text)
|
|
]
|
|
logger.debug(
|
|
"First tokens in arguments received: %s", arguments_delta
|
|
)
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
function=DeltaFunctionCall(
|
|
arguments=arguments_delta
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
self.streamed_args_for_tool[self.current_tool_id] += arguments_delta
|
|
|
|
elif cur_arguments and prev_arguments:
|
|
cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
|
|
prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
|
|
logger.debug(
|
|
"Searching for diff between \n%s\n%s",
|
|
cur_args_json,
|
|
prev_args_json,
|
|
)
|
|
|
|
argument_diff = extract_intermediate_diff(
|
|
cur_args_json, prev_args_json
|
|
)
|
|
logger.debug("got arguments diff: %s", argument_diff)
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
function=DeltaFunctionCall(
|
|
arguments=argument_diff
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
self.streamed_args_for_tool[self.current_tool_id] += argument_diff
|
|
else:
|
|
# try parsing it with regular JSON - if it works we're
|
|
# at the end, and we need to send the difference between
|
|
# tokens streamed so far and the valid JSON
|
|
delta = None
|
|
|
|
# check to see if the name is defined and has been sent. if so,
|
|
# stream the name - otherwise keep waiting
|
|
# finish by setting old and returning None as base case
|
|
self.prev_tool_call_arr = tool_call_arr
|
|
return delta
|
|
|
|
except Exception:
|
|
logger.exception("Error trying to handle streaming tool call.")
|
|
logger.debug(
|
|
"Skipping chunk as a result of tool streaming extraction error"
|
|
)
|
|
return None
|