mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 11:06:32 +08:00
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com> Co-authored-by: TJian <tunjian.tan@embeddedllm.com>
401 lines
13 KiB
Python
401 lines
13 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm.plugins
|
|
from vllm._aiter_ops import IS_AITER_FOUND, rocm_aiter_ops
|
|
from vllm.compilation.fusion import FUSED_OPS, FusedRMSQuantKey, RMSNormQuantFusionPass
|
|
from vllm.compilation.fx_utils import find_op_nodes
|
|
from vllm.compilation.matcher_utils import QUANT_OPS
|
|
from vllm.compilation.noop_elimination import NoOpEliminationPass
|
|
from vllm.compilation.post_cleanup import PostCleanupPass
|
|
from vllm.config import (
|
|
CompilationConfig,
|
|
CompilationMode,
|
|
ModelConfig,
|
|
PassConfig,
|
|
VllmConfig,
|
|
)
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
|
W8A8BlockFp8LinearOp,
|
|
)
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
GroupShape,
|
|
QuantKey,
|
|
ScaleDesc,
|
|
)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
Fp8LinearOp,
|
|
cutlass_block_fp8_supported,
|
|
cutlass_fp8_supported,
|
|
maybe_create_device_identity,
|
|
)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils.deep_gemm import is_deep_gemm_supported
|
|
|
|
from ..utils import override_cutlass_fp8_supported
|
|
from .backend import TestBackend
|
|
|
|
FP8_DTYPE = current_platform.fp8_dtype()
|
|
|
|
RMS_OP = torch.ops._C.rms_norm.default
|
|
RMS_ADD_OP = torch.ops._C.fused_add_rms_norm.default
|
|
|
|
|
|
class TestModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float,
|
|
group_shape: GroupShape,
|
|
use_aiter: bool = False,
|
|
cuda_force_torch: bool = False,
|
|
use_aiter_quant_op: bool = True,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.use_aiter = use_aiter
|
|
self.use_aiter_quant_op = use_aiter_quant_op
|
|
self.cuda_force_torch = cuda_force_torch
|
|
self.group_shape = group_shape
|
|
self.enable_quant_fp8_custom_op = None # Will be set later if applicable
|
|
|
|
self.norm = [RMSNorm(hidden_size, eps) for _ in range(4)]
|
|
|
|
# Setup quantization scale descriptor
|
|
static = group_shape == GroupShape.PER_TENSOR and not use_aiter
|
|
quant_scale = ScaleDesc(torch.float32, static, group_shape)
|
|
self.quant_key = QuantKey(dtype=FP8_DTYPE, scale=quant_scale, symmetric=True)
|
|
|
|
# Setup scales
|
|
if static:
|
|
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(3)]
|
|
else:
|
|
self.scale = [None for _ in range(3)]
|
|
|
|
# Setup weights
|
|
self.w = [
|
|
torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE) for _ in range(3)
|
|
]
|
|
if not group_shape.is_per_group() or use_aiter:
|
|
self.w = [self.w[0].t() for _ in range(3)]
|
|
|
|
# Setup weight scales
|
|
if group_shape.is_per_group():
|
|
scale_size = (
|
|
(hidden_size + 128 - 1) // 128
|
|
if use_aiter
|
|
else hidden_size // group_shape[1]
|
|
)
|
|
wscale_shape: tuple[int, ...] = (scale_size, scale_size)
|
|
else:
|
|
wscale_shape = (1,)
|
|
self.wscale = [torch.rand(wscale_shape, dtype=torch.float32) for _ in range(3)]
|
|
|
|
# Setup FP8 linear operation
|
|
is_per_group = group_shape.is_per_group()
|
|
if is_per_group and use_aiter:
|
|
self.fp8_linear = W8A8BlockFp8LinearOp(
|
|
weight_group_shape=GroupShape(128, 128),
|
|
act_quant_group_shape=group_shape,
|
|
use_aiter_and_is_supported=use_aiter_quant_op,
|
|
)
|
|
# AITER blockwise doesn't use enable_quant_fp8_custom_op
|
|
elif is_per_group:
|
|
self.fp8_linear = W8A8BlockFp8LinearOp(
|
|
weight_group_shape=GroupShape(group_shape[1], group_shape[1]),
|
|
act_quant_group_shape=group_shape,
|
|
cutlass_block_fp8_supported=cutlass_block_fp8_supported(),
|
|
use_aiter_and_is_supported=False,
|
|
)
|
|
self.enable_quant_fp8_custom_op = self.fp8_linear.input_quant_op.enabled()
|
|
elif use_aiter:
|
|
self.fp8_linear = Fp8LinearOp(
|
|
act_quant_static=False,
|
|
act_quant_group_shape=group_shape,
|
|
)
|
|
self.fp8_linear.quant_fp8.use_aiter = use_aiter_quant_op
|
|
self.enable_quant_fp8_custom_op = self.fp8_linear.quant_fp8.enabled()
|
|
else:
|
|
with override_cutlass_fp8_supported(not cuda_force_torch):
|
|
self.fp8_linear = Fp8LinearOp(
|
|
act_quant_static=static,
|
|
act_quant_group_shape=group_shape,
|
|
)
|
|
self.enable_quant_fp8_custom_op = self.fp8_linear.quant_fp8.enabled()
|
|
|
|
self.enable_rms_norm_custom_op = self.norm[0].enabled()
|
|
|
|
def forward(self, x):
|
|
# avoid having graph input be an arg to a pattern directly
|
|
x = resid = torch.relu(x)
|
|
y = self.norm[0](x)
|
|
|
|
x2 = self.fp8_linear.apply(
|
|
y, self.w[0], self.wscale[0], input_scale=self.scale[0]
|
|
)
|
|
# make sure resid is used for replacement to work
|
|
y2, resid = self.norm[1](x2, resid)
|
|
|
|
x3 = self.fp8_linear.apply(
|
|
y2, self.w[1], self.wscale[1], input_scale=self.scale[1]
|
|
)
|
|
|
|
y3, resid = self.norm[2](x3, resid) # use resid here
|
|
|
|
x4 = self.fp8_linear.apply(
|
|
y3, self.w[2], self.wscale[2], input_scale=self.scale[2]
|
|
)
|
|
|
|
y4, resid = self.norm[3](x4, resid) # use resid here
|
|
return y4
|
|
|
|
def ops_in_model_before(self):
|
|
if (
|
|
self.use_aiter
|
|
and self.group_shape.is_per_group()
|
|
and current_platform.is_fp8_fnuz()
|
|
):
|
|
return [rocm_aiter_ops.get_group_quant_op()]
|
|
if self.use_aiter and self.group_shape.is_per_group():
|
|
return [torch.ops.vllm.triton_per_token_group_quant_fp8.default]
|
|
if self.use_aiter and self.use_aiter_quant_op:
|
|
return [rocm_aiter_ops.get_per_token_quant_op()]
|
|
if self.use_aiter:
|
|
return [QUANT_OPS[self.quant_key]]
|
|
if self.enable_quant_fp8_custom_op:
|
|
return [QUANT_OPS[self.quant_key]]
|
|
return [torch.ops.aten.reciprocal]
|
|
|
|
def ops_in_model_after(self):
|
|
if self.use_aiter and self.group_shape.is_per_group():
|
|
from vllm.compilation.rocm_aiter_fusion import (
|
|
AiterFusedAddRMSFp8GroupQuantPattern,
|
|
AiterRMSFp8GroupQuantPattern,
|
|
)
|
|
|
|
return [
|
|
AiterFusedAddRMSFp8GroupQuantPattern.FUSED_OP,
|
|
AiterRMSFp8GroupQuantPattern.FUSED_OP,
|
|
]
|
|
if self.use_aiter:
|
|
from vllm.compilation.rocm_aiter_fusion import (
|
|
AiterFusedAddRMSNormDynamicQuantPattern,
|
|
AiterRMSNormDynamicQuantPattern,
|
|
)
|
|
|
|
return [
|
|
AiterFusedAddRMSNormDynamicQuantPattern.FUSED_OP,
|
|
AiterRMSNormDynamicQuantPattern.FUSED_OP,
|
|
]
|
|
return [
|
|
FUSED_OPS[FusedRMSQuantKey(self.quant_key, True)],
|
|
FUSED_OPS[FusedRMSQuantKey(self.quant_key, False)],
|
|
]
|
|
|
|
def ops_in_model_before_partial(self):
|
|
return (
|
|
[RMS_OP, RMS_ADD_OP]
|
|
if self.enable_rms_norm_custom_op
|
|
else [torch.ops.aten.rsqrt]
|
|
)
|
|
|
|
|
|
GROUP_SHAPES = [
|
|
GroupShape.PER_TOKEN,
|
|
GroupShape.PER_TENSOR,
|
|
GroupShape(1, 128),
|
|
GroupShape(1, 64),
|
|
]
|
|
|
|
|
|
def _run_fusion_test(
|
|
model,
|
|
fusion_pass,
|
|
vllm_config,
|
|
dtype,
|
|
hidden_size,
|
|
num_tokens,
|
|
):
|
|
"""Helper function for common fusion test logic.
|
|
|
|
Must be called within vllm_config context.
|
|
"""
|
|
noop_pass = NoOpEliminationPass(vllm_config)
|
|
cleanup_pass = PostCleanupPass(vllm_config)
|
|
|
|
backend = TestBackend(noop_pass, fusion_pass, cleanup_pass)
|
|
backend2 = TestBackend(noop_pass, cleanup_pass)
|
|
|
|
x = torch.rand(num_tokens, hidden_size)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
|
|
model_fused = torch.compile(model, backend=backend)
|
|
result_fused = model_fused(x)
|
|
|
|
model_unfused = torch.compile(model, backend=backend2)
|
|
result_unfused = model_unfused(x)
|
|
|
|
if dtype == torch.float16:
|
|
ATOL, RTOL = (2e-3, 2e-3)
|
|
else:
|
|
ATOL, RTOL = (1e-2, 1e-2)
|
|
|
|
torch.testing.assert_close(result_fused, result_unfused, atol=ATOL, rtol=RTOL)
|
|
|
|
assert fusion_pass.matched_count == 3
|
|
backend.check_before_ops(model.ops_in_model_before())
|
|
backend.check_after_ops(model.ops_in_model_after())
|
|
|
|
return backend, backend2
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("hidden_size", [256])
|
|
@pytest.mark.parametrize("num_tokens", [257])
|
|
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
|
|
@pytest.mark.parametrize("group_shape", GROUP_SHAPES)
|
|
@pytest.mark.parametrize("enable_rms_norm_custom_op", [True, False])
|
|
@pytest.mark.parametrize("enable_quant_fp8_custom_op", [True, False])
|
|
# cuda_force_torch used to test torch code path on platforms that
|
|
# cutlass_fp8_supported() == True.
|
|
@pytest.mark.parametrize(
|
|
"cuda_force_torch", [True, False] if cutlass_fp8_supported() else [True]
|
|
)
|
|
@pytest.mark.skipif(
|
|
not current_platform.is_cuda_alike(), reason="Only test on CUDA and ROCm"
|
|
)
|
|
def test_fusion_rmsnorm_quant(
|
|
dtype,
|
|
hidden_size,
|
|
num_tokens,
|
|
eps,
|
|
group_shape,
|
|
enable_rms_norm_custom_op,
|
|
enable_quant_fp8_custom_op,
|
|
cuda_force_torch,
|
|
):
|
|
if not enable_quant_fp8_custom_op and group_shape.is_per_group():
|
|
pytest.skip("Unsupported unwrapped quant fp8 op for blockwise quantization")
|
|
|
|
if group_shape == GroupShape(1, 64) and (
|
|
cutlass_block_fp8_supported() or is_deep_gemm_supported()
|
|
):
|
|
pytest.skip("Unsupported group shape 64 for CUTLASS/DeepGemm")
|
|
|
|
custom_ops = []
|
|
if enable_rms_norm_custom_op:
|
|
custom_ops.append("+rms_norm")
|
|
if enable_quant_fp8_custom_op:
|
|
custom_ops.append("+quant_fp8")
|
|
|
|
vllm_config = VllmConfig(
|
|
model_config=ModelConfig(dtype=dtype),
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
custom_ops=custom_ops,
|
|
pass_config=PassConfig(
|
|
fuse_norm_quant=True, fuse_act_quant=True, eliminate_noops=True
|
|
),
|
|
),
|
|
)
|
|
|
|
with vllm.config.set_current_vllm_config(vllm_config):
|
|
# Setup device before model creation
|
|
torch.set_default_device("cuda")
|
|
torch.set_default_dtype(dtype)
|
|
torch.manual_seed(1)
|
|
maybe_create_device_identity()
|
|
|
|
fusion_pass = RMSNormQuantFusionPass(vllm_config)
|
|
model = TestModel(
|
|
hidden_size=hidden_size,
|
|
eps=eps,
|
|
group_shape=group_shape,
|
|
use_aiter=False,
|
|
cuda_force_torch=cuda_force_torch,
|
|
)
|
|
|
|
backend, _ = _run_fusion_test(
|
|
model, fusion_pass, vllm_config, dtype, hidden_size, num_tokens
|
|
)
|
|
backend.check_before_ops(
|
|
model.ops_in_model_before_partial(), fully_replaced=False
|
|
)
|
|
|
|
# If RMSNorm custom op is disabled (native/torch impl used),
|
|
# there's a risk that the fused add doesn't get included in the
|
|
# replacement and only the rms part gets fused with quant.
|
|
# Hence, we check only 2 add nodes are left (final fused rmsnorm add).
|
|
if not enable_rms_norm_custom_op:
|
|
n_add_nodes = lambda g: sum(1 for _ in find_op_nodes(torch.ops.aten.add, g))
|
|
# 7 = 1 (RMS) + 3x2 (3xRMS_ADD, 2 each)
|
|
assert n_add_nodes(backend.graph_pre_pass) == 7
|
|
assert n_add_nodes(backend.graph_post_pass) == 2
|
|
|
|
|
|
GROUP_SHAPE_QUANT_OPS_MATCHS = [
|
|
(GroupShape.PER_TOKEN, True),
|
|
(GroupShape.PER_TOKEN, False),
|
|
(GroupShape(1, 128), True),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.bfloat16])
|
|
@pytest.mark.parametrize("hidden_size", [256])
|
|
@pytest.mark.parametrize("num_tokens", [257])
|
|
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
|
|
@pytest.mark.parametrize(
|
|
"group_shape, use_aiter_quant_op", GROUP_SHAPE_QUANT_OPS_MATCHS
|
|
)
|
|
@pytest.mark.skipif(
|
|
(not current_platform.is_rocm() or not IS_AITER_FOUND),
|
|
reason="Only test on ROCm with aiter package installed",
|
|
)
|
|
def test_aiter_fusion_rmsnorm_quant(
|
|
dtype: torch.dtype,
|
|
hidden_size: int,
|
|
num_tokens: int,
|
|
eps: float,
|
|
group_shape: GroupShape,
|
|
use_aiter_quant_op: bool,
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
):
|
|
vllm_config = VllmConfig(
|
|
model_config=ModelConfig(dtype=dtype),
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
custom_ops=["+rms_norm", "+quant_fp8"],
|
|
pass_config=PassConfig(fuse_norm_quant=True, eliminate_noops=True),
|
|
),
|
|
)
|
|
|
|
with vllm.config.set_current_vllm_config(vllm_config), monkeypatch.context() as m:
|
|
from vllm.compilation.rocm_aiter_fusion import RocmAiterRMSNormFusionPass
|
|
|
|
m.setenv("VLLM_ROCM_USE_AITER", "1")
|
|
rocm_aiter_ops.refresh_env_variables()
|
|
|
|
torch.set_default_device("cuda")
|
|
torch.set_default_dtype(dtype)
|
|
torch.manual_seed(1)
|
|
maybe_create_device_identity()
|
|
|
|
fusion_pass = RocmAiterRMSNormFusionPass(vllm_config)
|
|
model = TestModel(
|
|
hidden_size=hidden_size,
|
|
eps=eps,
|
|
group_shape=group_shape,
|
|
use_aiter=True,
|
|
use_aiter_quant_op=use_aiter_quant_op,
|
|
)
|
|
|
|
_run_fusion_test(
|
|
model, fusion_pass, vllm_config, dtype, hidden_size, num_tokens
|
|
)
|