mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-19 06:24:28 +08:00
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
388 lines
16 KiB
Python
388 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import threading
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, Optional
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.compilation.cuda_graph import CUDAGraphWrapper
|
|
from vllm.config import CUDAGraphMode, VllmConfig
|
|
from vllm.distributed import get_ep_group
|
|
from vllm.distributed.device_communicators.pynccl_allocator import (
|
|
set_graph_pool_id)
|
|
from vllm.forward_context import (create_forward_context, get_forward_context,
|
|
override_forward_context)
|
|
from vllm.logger import init_logger
|
|
from vllm.platforms import current_platform
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils import has_deep_gemm
|
|
from vllm.v1.worker.ubatching import UBatchContext, make_ubatch_contexts
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class UbatchMetadata:
|
|
context: UBatchContext
|
|
input_ids: torch.Tensor
|
|
positions: torch.Tensor
|
|
inputs_embeds: Optional[torch.Tensor]
|
|
intermediate_tensors: Optional[IntermediateTensors]
|
|
num_tokens: int
|
|
|
|
|
|
@dataclass
|
|
class CUDAGraphMetaData:
|
|
cudagraph: torch.cuda.CUDAGraph
|
|
ubatch_metadata: UbatchMetadata
|
|
outputs: Optional[Any] = None
|
|
|
|
|
|
class SMControlContextManager:
|
|
|
|
def __init__(self, comm_sms: int, set_comm_sms: Callable[[int], None],
|
|
set_compute_sms: Callable[[int], None]):
|
|
"""
|
|
Context manager for controlling SM (Streaming Multiprocessor)
|
|
allocation. Upon entering the context, it sets the number of SMs
|
|
allocated for communication and computation to comm_sms and
|
|
total_sms - comm_sms respectively. Upon exiting, it restores the
|
|
allocation to use all available SMs (i.e. total_sms).
|
|
|
|
Args:
|
|
comm_sms (int): The number of SMs to allocate for communication.
|
|
(The remainder will be used for computation.)
|
|
set_comm_sms (Callable[[int], None]):
|
|
A function that sets the number of SMs for communication.
|
|
set_compute_sms (Callable[[int], None]):
|
|
A function that sets the number of SMs for computation.
|
|
"""
|
|
|
|
assert current_platform.is_cuda(), \
|
|
"SM control is currently only supported on CUDA"
|
|
|
|
props = torch.cuda.get_device_properties(torch.cuda.current_device())
|
|
total_sms = props.multi_processor_count
|
|
|
|
assert comm_sms < total_sms
|
|
self.total_sms = total_sms
|
|
self.compute_sms = total_sms - comm_sms
|
|
self.comm_sms = comm_sms
|
|
self.set_comm_sms = set_comm_sms
|
|
self.set_compute_sms = set_compute_sms
|
|
|
|
def __enter__(self):
|
|
self.set_comm_sms(self.comm_sms)
|
|
self.set_compute_sms(self.compute_sms)
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.set_comm_sms(self.total_sms)
|
|
self.set_compute_sms(self.total_sms)
|
|
|
|
|
|
class UBatchWrapper:
|
|
|
|
def __init__(self, runnable: Callable, vllm_config: VllmConfig,
|
|
runtime_mode: CUDAGraphMode, device: torch.cuda.device):
|
|
self.runnable = runnable
|
|
self.vllm_config = vllm_config
|
|
self.compilation_config = vllm_config.compilation_config
|
|
self.comm_stream = torch.cuda.Stream(device=device)
|
|
# Two ubatch threads plus the main thread
|
|
self.ready_barrier = threading.Barrier(3)
|
|
|
|
self.cudagraphs: dict[int, CUDAGraphMetaData] = {}
|
|
|
|
self.cudagraph_wrapper = None
|
|
self.graph_pool = None
|
|
if runtime_mode is not CUDAGraphMode.NONE:
|
|
self.cudagraph_wrapper = CUDAGraphWrapper(
|
|
runnable, vllm_config, runtime_mode=runtime_mode)
|
|
self.graph_pool = current_platform.get_global_graph_pool()
|
|
|
|
self.sm_control = self._create_sm_control_context(vllm_config)
|
|
self.device = device
|
|
|
|
@staticmethod
|
|
def _create_sm_control_context(vllm_config: VllmConfig):
|
|
comm_sms = envs.VLLM_DBO_COMM_SMS
|
|
|
|
set_comm_sms = lambda sms: None
|
|
if vllm_config.parallel_config.enable_expert_parallel:
|
|
# Currently only DeepEP highthroughput supports SM control so this
|
|
# only affects that case.
|
|
all2all_manager = get_ep_group(
|
|
).device_communicator.all2all_manager
|
|
|
|
if all2all_manager.max_sms_used() is not None:
|
|
comm_sms = min(comm_sms, all2all_manager.max_sms_used())
|
|
|
|
if comm_sms > 0:
|
|
set_comm_sms = lambda sms: all2all_manager.set_num_sms(sms)
|
|
|
|
# TODO(lucas): support other kernels besides DeepGEMM
|
|
set_compute_sms = lambda sms: None
|
|
if has_deep_gemm() and comm_sms > 0:
|
|
import deep_gemm as dg
|
|
set_compute_sms = lambda sms: dg.set_num_sms(sms)
|
|
|
|
return SMControlContextManager(comm_sms=comm_sms,
|
|
set_comm_sms=set_comm_sms,
|
|
set_compute_sms=set_compute_sms)
|
|
|
|
def __getattr__(self, key: str):
|
|
# allow accessing the attributes of the runnable.
|
|
if hasattr(self.runnable, key):
|
|
return getattr(self.runnable, key)
|
|
raise AttributeError(f"Attribute {key} not exists in the runnable of "
|
|
f"cudagraph wrapper: {self.runnable}")
|
|
|
|
def unwrap(self) -> Callable:
|
|
# in case we need to access the original runnable.
|
|
return self.runnable
|
|
|
|
def _capture_ubatches(self, ubatch_metadata, model) -> torch.Tensor:
|
|
"""
|
|
Capture a cudagraph for a microbatched run.
|
|
|
|
The logic here is somewhat complicated because we need to make sure that
|
|
each of the ubatch threads initialize the cuda context before we start
|
|
the graph capture.
|
|
|
|
The flow is as follows:
|
|
1. The main thread starts up each ubatch thread. Each thread will
|
|
initialize its cuda context (torch.cuda.current_blas_handle())
|
|
before going to sleep upon entering the ubatch_context.
|
|
|
|
2. The main thread starts the graph capture and wakes up the first
|
|
ubatch thread.
|
|
|
|
3. Each ubatch thread runs the model to completion and returns the
|
|
completed output tensors back to the main thread.
|
|
|
|
4. The main thread stores the captured cudagraph along with its metadata
|
|
and returns
|
|
"""
|
|
|
|
@torch.inference_mode()
|
|
def _capture_ubatch_thread(results, ubatch_metadata):
|
|
torch.cuda.set_device(self.device)
|
|
ubatch_context = ubatch_metadata.context
|
|
with torch.cuda.stream(ubatch_context.compute_stream):
|
|
_ = torch.cuda.current_blas_handle()
|
|
with torch.cuda.stream(ubatch_context.comm_stream):
|
|
_ = torch.cuda.current_blas_handle()
|
|
with ubatch_context:
|
|
model_output = model(
|
|
input_ids=ubatch_metadata.input_ids,
|
|
positions=ubatch_metadata.positions,
|
|
intermediate_tensors=ubatch_metadata.intermediate_tensors,
|
|
inputs_embeds=ubatch_metadata.inputs_embeds,
|
|
)
|
|
|
|
results.append((ubatch_metadata.context.id, model_output))
|
|
|
|
results: list[tuple[int, torch.Tensor]] = []
|
|
compute_stream = ubatch_metadata[0].context.compute_stream
|
|
num_tokens = ubatch_metadata[0].num_tokens + \
|
|
ubatch_metadata[1].num_tokens
|
|
|
|
# Ubatches will manually manage the forward context, so we override
|
|
# it to None here so we can have it restored correctly later
|
|
with override_forward_context(None):
|
|
ubatch_threads = []
|
|
for metadata in ubatch_metadata:
|
|
thread = threading.Thread(target=_capture_ubatch_thread,
|
|
args=(
|
|
results,
|
|
metadata,
|
|
))
|
|
ubatch_threads.append(thread)
|
|
thread.start()
|
|
self.ready_barrier.wait() # Wait for both threads to be ready
|
|
|
|
# Capture the cudagraph
|
|
cudagraph_metadata = \
|
|
CUDAGraphMetaData(
|
|
cudagraph=torch.cuda.CUDAGraph(),
|
|
ubatch_metadata=ubatch_metadata,
|
|
)
|
|
if self.graph_pool is not None:
|
|
set_graph_pool_id(self.graph_pool)
|
|
else:
|
|
set_graph_pool_id(current_platform.graph_pool_handle())
|
|
with torch.cuda.graph(cudagraph_metadata.cudagraph,
|
|
stream=compute_stream,
|
|
pool=self.graph_pool):
|
|
ubatch_metadata[0].context.cpu_wait_event.set()
|
|
for thread in ubatch_threads:
|
|
thread.join()
|
|
sorted_results = [value for position, value in sorted(results)]
|
|
result = torch.cat(sorted_results, dim=0)
|
|
cudagraph_metadata.outputs = result
|
|
self.cudagraphs[num_tokens] = cudagraph_metadata
|
|
return cudagraph_metadata.outputs
|
|
|
|
def _run_ubatches(self, ubatch_metadata, model) -> torch.Tensor:
|
|
|
|
@torch.inference_mode()
|
|
def _ubatch_thread(results, model, ubatch_metadata):
|
|
with ubatch_metadata.context:
|
|
model_output = model(
|
|
input_ids=ubatch_metadata.input_ids,
|
|
positions=ubatch_metadata.positions,
|
|
intermediate_tensors=ubatch_metadata.intermediate_tensors,
|
|
inputs_embeds=ubatch_metadata.inputs_embeds,
|
|
)
|
|
results.append((ubatch_metadata.context.id, model_output))
|
|
|
|
results: list[tuple[int, torch.Tensor]] = []
|
|
|
|
# Ubatch threads will manually manage the forward context, so we
|
|
# override it to None here so we can have it restored correctly
|
|
# after both threads have finished
|
|
with override_forward_context(None):
|
|
ubatch_threads = []
|
|
for metadata in ubatch_metadata:
|
|
thread = threading.Thread(target=_ubatch_thread,
|
|
args=(
|
|
results,
|
|
model,
|
|
metadata,
|
|
))
|
|
ubatch_threads.append(thread)
|
|
thread.start()
|
|
self.ready_barrier.wait() # Wait for both threads to be ready
|
|
ubatch_metadata[0].context.cpu_wait_event.set()
|
|
for thread in ubatch_threads:
|
|
thread.join()
|
|
sorted_results = [value for position, value in sorted(results)]
|
|
result = torch.cat(sorted_results, dim=0)
|
|
return result
|
|
|
|
def _make_ubatch_metadata(self, ubatch_slices, attn_metadata, input_ids,
|
|
positions, inputs_embeds, intermediate_tensors,
|
|
compute_stream, dp_metadata, batch_descriptor,
|
|
cudagraph_runtime_mode) -> list[UbatchMetadata]:
|
|
|
|
# Create one forward context per ubatch
|
|
forward_contexts = []
|
|
for i, ubatch_slice in enumerate(ubatch_slices):
|
|
forward_contexts.append(
|
|
create_forward_context(
|
|
attn_metadata[i] if attn_metadata is not None else None,
|
|
self.vllm_config,
|
|
dp_metadata=dp_metadata,
|
|
batch_descriptor=batch_descriptor,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode))
|
|
|
|
ubatch_ctxs = make_ubatch_contexts(
|
|
num_micro_batches=len(ubatch_slices),
|
|
comm_stream=self.comm_stream,
|
|
compute_stream=compute_stream,
|
|
forward_contexts=forward_contexts,
|
|
ready_barrier=self.ready_barrier)
|
|
|
|
ubatch_metadata: list[UbatchMetadata] = []
|
|
for i, ubatch_slice in enumerate(ubatch_slices):
|
|
sliced_input_ids, sliced_positions, sliced_inputs_embeds, \
|
|
sliced_intermediate_tensors = \
|
|
self._slice_model_inputs(
|
|
ubatch_slice.token_slice, input_ids, positions,
|
|
inputs_embeds, intermediate_tensors)
|
|
ubatch_metadata.append(
|
|
UbatchMetadata(
|
|
context=ubatch_ctxs[i],
|
|
input_ids=sliced_input_ids,
|
|
positions=sliced_positions,
|
|
inputs_embeds=sliced_inputs_embeds,
|
|
intermediate_tensors=sliced_intermediate_tensors,
|
|
num_tokens=ubatch_slice.token_slice.stop -
|
|
ubatch_slice.token_slice.start))
|
|
|
|
return ubatch_metadata
|
|
|
|
def _slice_model_inputs(self, tokens_slice: slice, input_ids, positions,
|
|
inputs_embeds, intermediate_tensors):
|
|
sliced_input_ids = input_ids[tokens_slice]
|
|
# if we are using mrope. Mrope adds an additional dimension to the
|
|
# positions tensor
|
|
if positions.ndim == 2:
|
|
sliced_positions = positions[:, tokens_slice]
|
|
else:
|
|
sliced_positions = positions[tokens_slice]
|
|
sliced_inputs_embeds = inputs_embeds[
|
|
tokens_slice] if inputs_embeds else None
|
|
sliced_intermediate_tensors = intermediate_tensors[
|
|
tokens_slice] if intermediate_tensors else None
|
|
|
|
return (sliced_input_ids, sliced_positions, sliced_inputs_embeds,
|
|
sliced_intermediate_tensors)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
forward_context = get_forward_context()
|
|
batch_descriptor = forward_context.batch_descriptor
|
|
ubatch_slices = forward_context.ubatch_slices
|
|
cudagraph_runtime_mode = forward_context.cudagraph_runtime_mode
|
|
|
|
# If there's no ubatching, just run the runnable object
|
|
if ubatch_slices is None:
|
|
if cudagraph_runtime_mode in (CUDAGraphMode.NONE,
|
|
CUDAGraphMode.PIECEWISE):
|
|
return self.runnable(*args, **kwargs)
|
|
else:
|
|
assert self.cudagraph_wrapper is not None
|
|
return self.cudagraph_wrapper(*args, **kwargs)
|
|
|
|
attn_metadata = forward_context.attn_metadata
|
|
num_tokens = (ubatch_slices[0].token_slice.stop -
|
|
ubatch_slices[0].token_slice.start) * 2
|
|
input_ids = kwargs['input_ids']
|
|
positions = kwargs['positions']
|
|
intermediate_tensors = kwargs['intermediate_tensors']
|
|
inputs_embeds = kwargs['inputs_embeds']
|
|
compute_stream = torch.cuda.current_stream()
|
|
|
|
dp_metadata = forward_context.dp_metadata
|
|
|
|
# We shouldn't be here unless we are running with multiple DP ranks
|
|
assert dp_metadata is not None
|
|
|
|
if num_tokens not in self.cudagraphs \
|
|
and cudagraph_runtime_mode is CUDAGraphMode.FULL:
|
|
ubatch_metadata = self._make_ubatch_metadata(
|
|
ubatch_slices=ubatch_slices,
|
|
attn_metadata=attn_metadata,
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
compute_stream=compute_stream,
|
|
dp_metadata=dp_metadata,
|
|
batch_descriptor=batch_descriptor,
|
|
cudagraph_runtime_mode=CUDAGraphMode.NONE)
|
|
with self.sm_control:
|
|
return self._capture_ubatches(ubatch_metadata, self.model)
|
|
elif num_tokens in self.cudagraphs \
|
|
and cudagraph_runtime_mode is CUDAGraphMode.FULL:
|
|
cudagraph_metadata = self.cudagraphs[num_tokens]
|
|
cudagraph_metadata.cudagraph.replay()
|
|
return cudagraph_metadata.outputs
|
|
else:
|
|
ubatch_metadata = self._make_ubatch_metadata(
|
|
ubatch_slices=ubatch_slices,
|
|
attn_metadata=attn_metadata,
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
compute_stream=compute_stream,
|
|
dp_metadata=dp_metadata,
|
|
batch_descriptor=batch_descriptor,
|
|
cudagraph_runtime_mode=CUDAGraphMode.NONE)
|
|
with self.sm_control:
|
|
return self._run_ubatches(ubatch_metadata, self.model)
|