vllm/vllm/entrypoints/cli/openai.py
Russell Bryant b08025a83b
[Docs] Discuss api key limitations in security guide (#29922)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-12-02 20:57:28 -08:00

261 lines
7.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import os
import signal
import sys
from typing import TYPE_CHECKING
from openai import OpenAI
from openai.types.chat import ChatCompletionMessageParam
from vllm.entrypoints.cli.types import CLISubcommand
if TYPE_CHECKING:
from vllm.utils.argparse_utils import FlexibleArgumentParser
else:
FlexibleArgumentParser = argparse.ArgumentParser
def _register_signal_handlers():
def signal_handler(sig, frame):
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTSTP, signal_handler)
def _interactive_cli(args: argparse.Namespace) -> tuple[str, OpenAI]:
_register_signal_handlers()
base_url = args.url
api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
openai_client = OpenAI(api_key=api_key, base_url=base_url)
if args.model_name:
model_name = args.model_name
else:
available_models = openai_client.models.list()
model_name = available_models.data[0].id
print(f"Using model: {model_name}")
return model_name, openai_client
def _print_chat_stream(stream) -> str:
output = ""
for chunk in stream:
delta = chunk.choices[0].delta
if delta.content:
output += delta.content
print(delta.content, end="", flush=True)
print()
return output
def _print_completion_stream(stream) -> str:
output = ""
for chunk in stream:
text = chunk.choices[0].text
if text is not None:
output += text
print(text, end="", flush=True)
print()
return output
def chat(system_prompt: str | None, model_name: str, client: OpenAI) -> None:
conversation: list[ChatCompletionMessageParam] = []
if system_prompt is not None:
conversation.append({"role": "system", "content": system_prompt})
print("Please enter a message for the chat model:")
while True:
try:
input_message = input("> ")
except EOFError:
break
conversation.append({"role": "user", "content": input_message})
stream = client.chat.completions.create(
model=model_name, messages=conversation, stream=True
)
output = _print_chat_stream(stream)
conversation.append({"role": "assistant", "content": output})
def _add_query_options(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
parser.add_argument(
"--url",
type=str,
default="http://localhost:8000/v1",
help="url of the running OpenAI-Compatible RESTful API server",
)
parser.add_argument(
"--model-name",
type=str,
default=None,
help=(
"The model name used in prompt completion, default to "
"the first model in list models API call."
),
)
parser.add_argument(
"--api-key",
type=str,
default=None,
help=(
"API key for OpenAI services. If provided, this api key "
"will overwrite the api key obtained through environment variables."
" It is important to note that this option only applies to the "
"OpenAI-compatible API endpoints and NOT other endpoints that may "
"be present in the server. See the security guide in the vLLM docs "
"for more details."
),
)
return parser
class ChatCommand(CLISubcommand):
"""The `chat` subcommand for the vLLM CLI."""
name = "chat"
@staticmethod
def cmd(args: argparse.Namespace) -> None:
model_name, client = _interactive_cli(args)
system_prompt = args.system_prompt
conversation: list[ChatCompletionMessageParam] = []
if system_prompt is not None:
conversation.append({"role": "system", "content": system_prompt})
if args.quick:
conversation.append({"role": "user", "content": args.quick})
stream = client.chat.completions.create(
model=model_name, messages=conversation, stream=True
)
output = _print_chat_stream(stream)
conversation.append({"role": "assistant", "content": output})
return
print("Please enter a message for the chat model:")
while True:
try:
input_message = input("> ")
except EOFError:
break
conversation.append({"role": "user", "content": input_message})
stream = client.chat.completions.create(
model=model_name, messages=conversation, stream=True
)
output = _print_chat_stream(stream)
conversation.append({"role": "assistant", "content": output})
@staticmethod
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
"""Add CLI arguments for the chat command."""
_add_query_options(parser)
parser.add_argument(
"--system-prompt",
type=str,
default=None,
help=(
"The system prompt to be added to the chat template, "
"used for models that support system prompts."
),
)
parser.add_argument(
"-q",
"--quick",
type=str,
metavar="MESSAGE",
help=("Send a single prompt as MESSAGE and print the response, then exit."),
)
return parser
def subparser_init(
self, subparsers: argparse._SubParsersAction
) -> FlexibleArgumentParser:
parser = subparsers.add_parser(
"chat",
help="Generate chat completions via the running API server.",
description="Generate chat completions via the running API server.",
usage="vllm chat [options]",
)
return ChatCommand.add_cli_args(parser)
class CompleteCommand(CLISubcommand):
"""The `complete` subcommand for the vLLM CLI."""
name = "complete"
@staticmethod
def cmd(args: argparse.Namespace) -> None:
model_name, client = _interactive_cli(args)
kwargs = {
"model": model_name,
"stream": True,
}
if args.max_tokens:
kwargs["max_tokens"] = args.max_tokens
if args.quick:
stream = client.completions.create(prompt=args.quick, **kwargs)
_print_completion_stream(stream)
return
print("Please enter prompt to complete:")
while True:
try:
input_prompt = input("> ")
except EOFError:
break
stream = client.completions.create(prompt=input_prompt, **kwargs)
_print_completion_stream(stream)
@staticmethod
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
"""Add CLI arguments for the complete command."""
_add_query_options(parser)
parser.add_argument(
"--max-tokens",
type=int,
help="Maximum number of tokens to generate per output sequence.",
)
parser.add_argument(
"-q",
"--quick",
type=str,
metavar="PROMPT",
help="Send a single prompt and print the completion output, then exit.",
)
return parser
def subparser_init(
self, subparsers: argparse._SubParsersAction
) -> FlexibleArgumentParser:
parser = subparsers.add_parser(
"complete",
help=(
"Generate text completions based on the given prompt "
"via the running API server."
),
description=(
"Generate text completions based on the given prompt "
"via the running API server."
),
usage="vllm complete [options]",
)
return CompleteCommand.add_cli_args(parser)
def cmd_init() -> list[CLISubcommand]:
return [ChatCommand(), CompleteCommand()]