mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 04:34:59 +08:00
63 lines
1.7 KiB
Python
63 lines
1.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import weakref
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from vllm import LLM, PoolingParams
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
|
|
MODEL_NAME = "intfloat/multilingual-e5-small"
|
|
|
|
prompts = ["The chef prepared a delicious meal."]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(
|
|
model=MODEL_NAME,
|
|
max_num_batched_tokens=32768,
|
|
tensor_parallel_size=1,
|
|
gpu_memory_utilization=0.75,
|
|
enforce_eager=True,
|
|
seed=0,
|
|
)
|
|
|
|
yield weakref.proxy(llm)
|
|
|
|
del llm
|
|
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_encode_api(llm: LLM):
|
|
outputs = llm.encode(prompts, pooling_task="token_embed", use_tqdm=False)
|
|
multi_vector = outputs[0].outputs.data
|
|
assert multi_vector.shape == (11, 384)
|
|
|
|
|
|
def test_pooling_params(llm: LLM):
|
|
def get_outputs(normalize):
|
|
outputs = llm.embed(
|
|
prompts, pooling_params=PoolingParams(normalize=normalize), use_tqdm=False
|
|
)
|
|
return torch.tensor([x.outputs.embedding for x in outputs])
|
|
|
|
default = get_outputs(normalize=None)
|
|
w_normal = get_outputs(normalize=True)
|
|
wo_normal = get_outputs(normalize=False)
|
|
|
|
assert torch.allclose(default, w_normal, atol=1e-2), "Default should use normal."
|
|
assert not torch.allclose(w_normal, wo_normal, atol=1e-2), (
|
|
"wo_normal should not use normal."
|
|
)
|
|
assert torch.allclose(w_normal, F.normalize(wo_normal, p=2, dim=-1), atol=1e-2), (
|
|
"w_normal should be close to normal(wo_normal)."
|
|
)
|