vllm/tests/entrypoints/pooling/llm/test_embedding.py
2025-10-15 11:14:41 +00:00

63 lines
1.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
import torch
import torch.nn.functional as F
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
MODEL_NAME = "intfloat/multilingual-e5-small"
prompts = ["The chef prepared a delicious meal."]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_encode_api(llm: LLM):
outputs = llm.encode(prompts, pooling_task="token_embed", use_tqdm=False)
multi_vector = outputs[0].outputs.data
assert multi_vector.shape == (11, 384)
def test_pooling_params(llm: LLM):
def get_outputs(normalize):
outputs = llm.embed(
prompts, pooling_params=PoolingParams(normalize=normalize), use_tqdm=False
)
return torch.tensor([x.outputs.embedding for x in outputs])
default = get_outputs(normalize=None)
w_normal = get_outputs(normalize=True)
wo_normal = get_outputs(normalize=False)
assert torch.allclose(default, w_normal, atol=1e-2), "Default should use normal."
assert not torch.allclose(w_normal, wo_normal, atol=1e-2), (
"wo_normal should not use normal."
)
assert torch.allclose(w_normal, F.normalize(wo_normal, p=2, dim=-1), atol=1e-2), (
"w_normal should be close to normal(wo_normal)."
)