vllm/tests/entrypoints/pooling/llm/test_reward.py
2025-10-15 11:14:41 +00:00

59 lines
1.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
import torch
from tests.models.utils import softmax
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
MODEL_NAME = "internlm/internlm2-1_8b-reward"
prompts = ["The chef prepared a delicious meal."]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
trust_remote_code=True,
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
def test_pooling_params(llm: LLM):
def get_outputs(activation):
outputs = llm.reward(
prompts, pooling_params=PoolingParams(activation=activation), use_tqdm=False
)
return torch.cat([x.outputs.data for x in outputs])
default = get_outputs(activation=None)
w_activation = get_outputs(activation=True)
wo_activation = get_outputs(activation=False)
assert torch.allclose(default, w_activation, atol=1e-2), (
"Default should use activation."
)
assert not torch.allclose(w_activation, wo_activation, atol=1e-2), (
"wo_activation should not use activation."
)
assert torch.allclose(softmax(wo_activation), w_activation, atol=1e-2), (
"w_activation should be close to activation(wo_activation)."
)