mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 01:25:30 +08:00
530 lines
16 KiB
Python
530 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import base64
|
|
|
|
import numpy as np
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
import requests
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tests.models.language.pooling.embed_utils import run_embedding_correctness_test
|
|
from tests.models.utils import check_embeddings_close
|
|
from tests.utils import RemoteOpenAIServer
|
|
from vllm.entrypoints.openai.protocol import (
|
|
EMBED_DTYPE_TO_TORCH_DTYPE,
|
|
EmbeddingResponse,
|
|
PoolingResponse,
|
|
)
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
MODEL_NAME = "intfloat/multilingual-e5-small"
|
|
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
|
|
DTYPE = "bfloat16"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
args = [
|
|
"--runner",
|
|
"pooling",
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
DTYPE,
|
|
"--enforce-eager",
|
|
"--max-model-len",
|
|
"512",
|
|
"--chat-template",
|
|
DUMMY_CHAT_TEMPLATE,
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def hf_model(hf_runner):
|
|
with hf_runner(MODEL_NAME, dtype=DTYPE, is_sentence_transformer=True) as hf_model:
|
|
yield hf_model
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding(hf_model, client: openai.AsyncOpenAI, model_name: str):
|
|
input_texts = [
|
|
"The chef prepared a delicious meal.",
|
|
]
|
|
|
|
# test single embedding
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 11
|
|
assert embeddings.usage.total_tokens == 11
|
|
|
|
vllm_outputs = [d.embedding for d in embeddings.data]
|
|
run_embedding_correctness_test(hf_model, input_texts, vllm_outputs)
|
|
|
|
# test using token IDs
|
|
input_tokens = [1, 1, 1, 1, 1]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_tokens,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 5
|
|
assert embeddings.usage.total_tokens == 5
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_embedding(hf_model, client: openai.AsyncOpenAI, model_name: str):
|
|
# test list[str]
|
|
input_texts = [
|
|
"The cat sat on the mat.",
|
|
"A feline was resting on a rug.",
|
|
"Stars twinkle brightly in the night sky.",
|
|
]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 3
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 33
|
|
assert embeddings.usage.total_tokens == 33
|
|
|
|
vllm_outputs = [d.embedding for d in embeddings.data]
|
|
run_embedding_correctness_test(hf_model, input_texts, vllm_outputs)
|
|
|
|
# test list[list[int]]
|
|
input_tokens = [
|
|
[4, 5, 7, 9, 20],
|
|
[15, 29, 499],
|
|
[24, 24, 24, 24, 24],
|
|
[25, 32, 64, 77],
|
|
]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_tokens,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 4
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 17
|
|
assert embeddings.usage.total_tokens == 17
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_conversation_embedding(
|
|
server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str
|
|
):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "The cat sat on the mat.",
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "A feline was resting on a rug.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Stars twinkle brightly in the night sky.",
|
|
},
|
|
]
|
|
|
|
chat_response = requests.post(
|
|
server.url_for("v1/embeddings"),
|
|
json={
|
|
"model": model_name,
|
|
"messages": messages,
|
|
"encoding_format": "float",
|
|
},
|
|
)
|
|
chat_response.raise_for_status()
|
|
chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
|
|
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
prompt = tokenizer.apply_chat_template(
|
|
messages,
|
|
chat_template=DUMMY_CHAT_TEMPLATE,
|
|
add_generation_prompt=True,
|
|
continue_final_message=False,
|
|
tokenize=False,
|
|
)
|
|
completion_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=prompt,
|
|
encoding_format="float",
|
|
# To be consistent with chat
|
|
extra_body={"add_special_tokens": False},
|
|
)
|
|
completion_embeddings = EmbeddingResponse.model_validate(
|
|
completion_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert chat_embeddings.id is not None
|
|
assert completion_embeddings.id is not None
|
|
assert chat_embeddings.created <= completion_embeddings.created
|
|
assert chat_embeddings.model_dump(exclude={"id", "created"}) == (
|
|
completion_embeddings.model_dump(exclude={"id", "created"})
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_base64_embedding(
|
|
hf_model, client: openai.AsyncOpenAI, model_name: str
|
|
):
|
|
input_texts = [
|
|
"Hello my name is",
|
|
"The best thing about vLLM is that it supports many different models",
|
|
]
|
|
|
|
responses_float = await client.embeddings.create(
|
|
input=input_texts, model=model_name, encoding_format="float"
|
|
)
|
|
float_data = [d.embedding for d in responses_float.data]
|
|
run_embedding_correctness_test(hf_model, input_texts, float_data)
|
|
|
|
responses_base64 = await client.embeddings.create(
|
|
input=input_texts, model=model_name, encoding_format="base64"
|
|
)
|
|
base64_data = []
|
|
for data in responses_base64.data:
|
|
base64_data.append(
|
|
np.frombuffer(base64.b64decode(data.embedding), dtype="float32").tolist()
|
|
)
|
|
|
|
run_embedding_correctness_test(hf_model, input_texts, base64_data)
|
|
|
|
# Default response is float32 decoded from base64 by OpenAI Client
|
|
responses_default = await client.embeddings.create(
|
|
input=input_texts, model=model_name
|
|
)
|
|
default_data = [d.embedding for d in responses_default.data]
|
|
run_embedding_correctness_test(hf_model, input_texts, default_data)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_base64_embed_dtype(
|
|
hf_model, server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str
|
|
):
|
|
input_texts = [
|
|
"The best thing about vLLM is that it supports many different models",
|
|
]
|
|
|
|
responses_float = await client.embeddings.create(
|
|
input=input_texts, model=model_name, encoding_format="float"
|
|
)
|
|
float_data = [d.embedding for d in responses_float.data]
|
|
|
|
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
|
|
responses_base64 = requests.post(
|
|
server.url_for("/v1/embeddings"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_texts,
|
|
"encoding_format": "base64",
|
|
"embed_dtype": embed_dtype,
|
|
},
|
|
)
|
|
|
|
base64_data = []
|
|
for data in responses_base64.json()["data"]:
|
|
base64_data.append(
|
|
torch.frombuffer(base64.b64decode(data["embedding"]), dtype=torch_dtype)
|
|
.to(torch.float32)
|
|
.tolist()
|
|
)
|
|
|
|
check_embeddings_close(
|
|
embeddings_0_lst=float_data,
|
|
embeddings_1_lst=base64_data,
|
|
name_0="float_data",
|
|
name_1="base64_data",
|
|
tol=1e-2,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_base64_embed_dtype_not_supported(
|
|
hf_model, server: RemoteOpenAIServer, model_name: str
|
|
):
|
|
input_texts = [
|
|
"The best thing about vLLM is that it supports many different models",
|
|
]
|
|
|
|
bad_embed_dtype = "bad_embed_dtype"
|
|
|
|
responses_base64 = requests.post(
|
|
server.url_for("/v1/embeddings"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_texts,
|
|
"encoding_format": "base64",
|
|
"embed_dtype": bad_embed_dtype,
|
|
},
|
|
)
|
|
|
|
assert responses_base64.status_code == 400
|
|
assert responses_base64.json()["error"]["message"].startswith(
|
|
f"embed_dtype={bad_embed_dtype!r} is not supported."
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding_truncation(client: openai.AsyncOpenAI, model_name: str):
|
|
input_texts = [
|
|
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
|
|
]
|
|
|
|
# test single embedding
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name, input=input_texts, extra_body={"truncate_prompt_tokens": 10}
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 10
|
|
assert embeddings.usage.total_tokens == 10
|
|
|
|
input_tokens = [
|
|
1,
|
|
24428,
|
|
289,
|
|
18341,
|
|
26165,
|
|
285,
|
|
19323,
|
|
283,
|
|
289,
|
|
26789,
|
|
3871,
|
|
28728,
|
|
9901,
|
|
340,
|
|
2229,
|
|
385,
|
|
340,
|
|
315,
|
|
28741,
|
|
28804,
|
|
2,
|
|
]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name, input=input_tokens, extra_body={"truncate_prompt_tokens": 10}
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json")
|
|
)
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 384
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 10
|
|
assert embeddings.usage.total_tokens == 10
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding_truncation_invalid(
|
|
client: openai.AsyncOpenAI, model_name: str
|
|
):
|
|
input_texts = [
|
|
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
|
|
]
|
|
|
|
with pytest.raises(openai.BadRequestError):
|
|
response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
extra_body={"truncate_prompt_tokens": 8193},
|
|
)
|
|
assert "error" in response.object
|
|
assert (
|
|
"truncate_prompt_tokens value is greater than max_model_len. "
|
|
"Please, select a smaller truncation size." in response.message
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_invocations(server: RemoteOpenAIServer, client: openai.AsyncOpenAI):
|
|
input_texts = [
|
|
"The chef prepared a delicious meal.",
|
|
]
|
|
|
|
request_args = {
|
|
"model": MODEL_NAME,
|
|
"input": input_texts,
|
|
"encoding_format": "float",
|
|
}
|
|
|
|
completion_response = await client.embeddings.create(**request_args)
|
|
|
|
invocation_response = requests.post(
|
|
server.url_for("invocations"), json=request_args
|
|
)
|
|
invocation_response.raise_for_status()
|
|
|
|
completion_output = completion_response.model_dump()
|
|
invocation_output = invocation_response.json()
|
|
|
|
assert completion_output.keys() == invocation_output.keys()
|
|
for completion_data, invocation_data in zip(
|
|
completion_output["data"], invocation_output["data"]
|
|
):
|
|
assert completion_data.keys() == invocation_data.keys()
|
|
check_embeddings_close(
|
|
embeddings_0_lst=[completion_data["embedding"]],
|
|
embeddings_1_lst=[invocation_data["embedding"]],
|
|
name_0="completion",
|
|
name_1="invocation",
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_invocations_conversation(server: RemoteOpenAIServer):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "The cat sat on the mat.",
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "A feline was resting on a rug.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Stars twinkle brightly in the night sky.",
|
|
},
|
|
]
|
|
|
|
request_args = {
|
|
"model": MODEL_NAME,
|
|
"messages": messages,
|
|
"encoding_format": "float",
|
|
}
|
|
|
|
chat_response = requests.post(server.url_for("v1/embeddings"), json=request_args)
|
|
chat_response.raise_for_status()
|
|
|
|
invocation_response = requests.post(
|
|
server.url_for("invocations"), json=request_args
|
|
)
|
|
invocation_response.raise_for_status()
|
|
|
|
chat_output = chat_response.json()
|
|
invocation_output = invocation_response.json()
|
|
|
|
assert chat_output.keys() == invocation_output.keys()
|
|
for chat_data, invocation_data in zip(
|
|
chat_output["data"], invocation_output["data"]
|
|
):
|
|
assert chat_data.keys() == invocation_data.keys()
|
|
check_embeddings_close(
|
|
embeddings_0_lst=[chat_data["embedding"]],
|
|
embeddings_1_lst=[invocation_data["embedding"]],
|
|
name_0="chat",
|
|
name_1="invocation",
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_normalize(server: RemoteOpenAIServer, model_name: str):
|
|
input_text = ["The chef prepared a delicious meal."]
|
|
|
|
async def get_outputs(normalize):
|
|
request_args = {
|
|
"model": MODEL_NAME,
|
|
"input": input_text,
|
|
"encoding_format": "float",
|
|
"normalize": normalize,
|
|
}
|
|
|
|
response = requests.post(server.url_for("v1/embeddings"), json=request_args)
|
|
outputs = response.json()
|
|
|
|
return torch.tensor([x["embedding"] for x in outputs["data"]])
|
|
|
|
default = await get_outputs(normalize=None)
|
|
w_normal = await get_outputs(normalize=True)
|
|
wo_normal = await get_outputs(normalize=False)
|
|
|
|
assert torch.allclose(default, w_normal, atol=1e-2), "Default should use normal."
|
|
assert not torch.allclose(w_normal, wo_normal, atol=1e-2), (
|
|
"wo_normal should not use normal."
|
|
)
|
|
assert torch.allclose(w_normal, F.normalize(wo_normal, p=2, dim=-1), atol=1e-2), (
|
|
"w_normal should be close to normal(wo_normal)."
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
|
input_text = ["The chef prepared a delicious meal."]
|
|
|
|
response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={"model": model_name, "input": input_text, "encoding_format": "float"},
|
|
)
|
|
|
|
poolings = PoolingResponse.model_validate(response.json())
|
|
|
|
assert len(poolings.data) == 1
|
|
assert len(poolings.data[0].data) == 11
|
|
assert len(poolings.data[0].data[0]) == 384
|