vllm/tests/entrypoints/pooling/openai/test_embedding.py
2025-10-15 11:14:41 +00:00

530 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import numpy as np
import openai
import pytest
import pytest_asyncio
import requests
import torch
import torch.nn.functional as F
from tests.models.language.pooling.embed_utils import run_embedding_correctness_test
from tests.models.utils import check_embeddings_close
from tests.utils import RemoteOpenAIServer
from vllm.entrypoints.openai.protocol import (
EMBED_DTYPE_TO_TORCH_DTYPE,
EmbeddingResponse,
PoolingResponse,
)
from vllm.transformers_utils.tokenizer import get_tokenizer
MODEL_NAME = "intfloat/multilingual-e5-small"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
DTYPE = "bfloat16"
@pytest.fixture(scope="module")
def server():
args = [
"--runner",
"pooling",
# use half precision for speed and memory savings in CI environment
"--dtype",
DTYPE,
"--enforce-eager",
"--max-model-len",
"512",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="module")
def hf_model(hf_runner):
with hf_runner(MODEL_NAME, dtype=DTYPE, is_sentence_transformer=True) as hf_model:
yield hf_model
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding(hf_model, client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 11
assert embeddings.usage.total_tokens == 11
vllm_outputs = [d.embedding for d in embeddings.data]
run_embedding_correctness_test(hf_model, input_texts, vllm_outputs)
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 5
assert embeddings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_embedding(hf_model, client: openai.AsyncOpenAI, model_name: str):
# test list[str]
input_texts = [
"The cat sat on the mat.",
"A feline was resting on a rug.",
"Stars twinkle brightly in the night sky.",
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 33
assert embeddings.usage.total_tokens == 33
vllm_outputs = [d.embedding for d in embeddings.data]
run_embedding_correctness_test(hf_model, input_texts, vllm_outputs)
# test list[list[int]]
input_tokens = [
[4, 5, 7, 9, 20],
[15, 29, 499],
[24, 24, 24, 24, 24],
[25, 32, 64, 77],
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_embedding(
server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str
):
messages = [
{
"role": "user",
"content": "The cat sat on the mat.",
},
{
"role": "assistant",
"content": "A feline was resting on a rug.",
},
{
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
},
]
chat_response = requests.post(
server.url_for("v1/embeddings"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completion_response = await client.embeddings.create(
model=model_name,
input=prompt,
encoding_format="float",
# To be consistent with chat
extra_body={"add_special_tokens": False},
)
completion_embeddings = EmbeddingResponse.model_validate(
completion_response.model_dump(mode="json")
)
assert chat_embeddings.id is not None
assert completion_embeddings.id is not None
assert chat_embeddings.created <= completion_embeddings.created
assert chat_embeddings.model_dump(exclude={"id", "created"}) == (
completion_embeddings.model_dump(exclude={"id", "created"})
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_embedding(
hf_model, client: openai.AsyncOpenAI, model_name: str
):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models",
]
responses_float = await client.embeddings.create(
input=input_texts, model=model_name, encoding_format="float"
)
float_data = [d.embedding for d in responses_float.data]
run_embedding_correctness_test(hf_model, input_texts, float_data)
responses_base64 = await client.embeddings.create(
input=input_texts, model=model_name, encoding_format="base64"
)
base64_data = []
for data in responses_base64.data:
base64_data.append(
np.frombuffer(base64.b64decode(data.embedding), dtype="float32").tolist()
)
run_embedding_correctness_test(hf_model, input_texts, base64_data)
# Default response is float32 decoded from base64 by OpenAI Client
responses_default = await client.embeddings.create(
input=input_texts, model=model_name
)
default_data = [d.embedding for d in responses_default.data]
run_embedding_correctness_test(hf_model, input_texts, default_data)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_base64_embed_dtype(
hf_model, server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str
):
input_texts = [
"The best thing about vLLM is that it supports many different models",
]
responses_float = await client.embeddings.create(
input=input_texts, model=model_name, encoding_format="float"
)
float_data = [d.embedding for d in responses_float.data]
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
responses_base64 = requests.post(
server.url_for("/v1/embeddings"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "base64",
"embed_dtype": embed_dtype,
},
)
base64_data = []
for data in responses_base64.json()["data"]:
base64_data.append(
torch.frombuffer(base64.b64decode(data["embedding"]), dtype=torch_dtype)
.to(torch.float32)
.tolist()
)
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=base64_data,
name_0="float_data",
name_1="base64_data",
tol=1e-2,
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_base64_embed_dtype_not_supported(
hf_model, server: RemoteOpenAIServer, model_name: str
):
input_texts = [
"The best thing about vLLM is that it supports many different models",
]
bad_embed_dtype = "bad_embed_dtype"
responses_base64 = requests.post(
server.url_for("/v1/embeddings"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "base64",
"embed_dtype": bad_embed_dtype,
},
)
assert responses_base64.status_code == 400
assert responses_base64.json()["error"]["message"].startswith(
f"embed_dtype={bad_embed_dtype!r} is not supported."
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation(client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name, input=input_texts, extra_body={"truncate_prompt_tokens": 10}
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
input_tokens = [
1,
24428,
289,
18341,
26165,
285,
19323,
283,
289,
26789,
3871,
28728,
9901,
340,
2229,
385,
340,
315,
28741,
28804,
2,
]
embedding_response = await client.embeddings.create(
model=model_name, input=input_tokens, extra_body={"truncate_prompt_tokens": 10}
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json")
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation_invalid(
client: openai.AsyncOpenAI, model_name: str
):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
with pytest.raises(openai.BadRequestError):
response = await client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 8193},
)
assert "error" in response.object
assert (
"truncate_prompt_tokens value is greater than max_model_len. "
"Please, select a smaller truncation size." in response.message
)
@pytest.mark.asyncio
async def test_invocations(server: RemoteOpenAIServer, client: openai.AsyncOpenAI):
input_texts = [
"The chef prepared a delicious meal.",
]
request_args = {
"model": MODEL_NAME,
"input": input_texts,
"encoding_format": "float",
}
completion_response = await client.embeddings.create(**request_args)
invocation_response = requests.post(
server.url_for("invocations"), json=request_args
)
invocation_response.raise_for_status()
completion_output = completion_response.model_dump()
invocation_output = invocation_response.json()
assert completion_output.keys() == invocation_output.keys()
for completion_data, invocation_data in zip(
completion_output["data"], invocation_output["data"]
):
assert completion_data.keys() == invocation_data.keys()
check_embeddings_close(
embeddings_0_lst=[completion_data["embedding"]],
embeddings_1_lst=[invocation_data["embedding"]],
name_0="completion",
name_1="invocation",
)
@pytest.mark.asyncio
async def test_invocations_conversation(server: RemoteOpenAIServer):
messages = [
{
"role": "user",
"content": "The cat sat on the mat.",
},
{
"role": "assistant",
"content": "A feline was resting on a rug.",
},
{
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
},
]
request_args = {
"model": MODEL_NAME,
"messages": messages,
"encoding_format": "float",
}
chat_response = requests.post(server.url_for("v1/embeddings"), json=request_args)
chat_response.raise_for_status()
invocation_response = requests.post(
server.url_for("invocations"), json=request_args
)
invocation_response.raise_for_status()
chat_output = chat_response.json()
invocation_output = invocation_response.json()
assert chat_output.keys() == invocation_output.keys()
for chat_data, invocation_data in zip(
chat_output["data"], invocation_output["data"]
):
assert chat_data.keys() == invocation_data.keys()
check_embeddings_close(
embeddings_0_lst=[chat_data["embedding"]],
embeddings_1_lst=[invocation_data["embedding"]],
name_0="chat",
name_1="invocation",
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_normalize(server: RemoteOpenAIServer, model_name: str):
input_text = ["The chef prepared a delicious meal."]
async def get_outputs(normalize):
request_args = {
"model": MODEL_NAME,
"input": input_text,
"encoding_format": "float",
"normalize": normalize,
}
response = requests.post(server.url_for("v1/embeddings"), json=request_args)
outputs = response.json()
return torch.tensor([x["embedding"] for x in outputs["data"]])
default = await get_outputs(normalize=None)
w_normal = await get_outputs(normalize=True)
wo_normal = await get_outputs(normalize=False)
assert torch.allclose(default, w_normal, atol=1e-2), "Default should use normal."
assert not torch.allclose(w_normal, wo_normal, atol=1e-2), (
"wo_normal should not use normal."
)
assert torch.allclose(w_normal, F.normalize(wo_normal, p=2, dim=-1), atol=1e-2), (
"w_normal should be close to normal(wo_normal)."
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
input_text = ["The chef prepared a delicious meal."]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_text, "encoding_format": "float"},
)
poolings = PoolingResponse.model_validate(response.json())
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 11
assert len(poolings.data[0].data[0]) == 384