vllm/tests/entrypoints/pooling/openai/test_pooling.py
wang.yuqi d2a7938582
[Frontend][1/N] Improve all pooling task | Support FP16 Embedding Base64 (Still uses fp32 by default). (#26414)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Maximilien de Bayser <maxdebayser@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-13 19:06:43 +00:00

407 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import numpy as np
import pytest
import requests
import torch
from tests.models.utils import check_embeddings_close
from tests.utils import RemoteOpenAIServer
from vllm.entrypoints.openai.protocol import EMBED_DTYPE_TO_TORCH_DTYPE, PoolingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
MODEL_NAME = "internlm/internlm2-1_8b-reward"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
@pytest.fixture(scope="module")
def server():
args = [
"--runner",
"pooling",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"512",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
"--trust-remote-code",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_pooling(server: RemoteOpenAIServer, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single pooling
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_texts, "encoding_format": "float"},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 8
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 8
assert poolings.usage.total_tokens == 8
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_tokens, "encoding_format": "float"},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 5
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 5
assert poolings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_pooling(server: RemoteOpenAIServer, model_name: str):
# test list[str]
input_texts = [
"The cat sat on the mat.",
"A feline was resting on a rug.",
"Stars twinkle brightly in the night sky.",
]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_texts, "encoding_format": "float"},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 3
assert len(poolings.data[0].data) == 8
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 29
assert poolings.usage.total_tokens == 29
# test list[list[int]]
input_tokens = [
[4, 5, 7, 9, 20],
[15, 29, 499],
[24, 24, 24, 24, 24],
[25, 32, 64, 77],
]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_tokens, "encoding_format": "float"},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 4
assert len(poolings.data[0].data) == 5
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 17
assert poolings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_pooling(server: RemoteOpenAIServer, model_name: str):
messages = [
{
"role": "user",
"content": "The cat sat on the mat.",
},
{
"role": "assistant",
"content": "A feline was resting on a rug.",
},
{
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
},
]
chat_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_poolings = PoolingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(
tokenizer_name=model_name,
tokenizer_mode="fast",
trust_remote_code=True,
)
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completions_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": prompt,
"encoding_format": "float",
# To be consistent with chat
"add_special_tokens": False,
},
)
completions_response.raise_for_status()
completion_poolings = PoolingResponse.model_validate(completions_response.json())
assert chat_poolings.id is not None
assert completion_poolings.id is not None
assert chat_poolings.created <= completion_poolings.created
assert chat_poolings.model_dump(exclude={"id", "created"}) == (
completion_poolings.model_dump(exclude={"id", "created"})
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_pooling(server: RemoteOpenAIServer, model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models",
]
float_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "float",
},
)
float_response.raise_for_status()
responses_float = PoolingResponse.model_validate(float_response.json())
float_data = [np.array(d.data).squeeze(-1).tolist() for d in responses_float.data]
base64_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "base64",
},
)
base64_response.raise_for_status()
responses_base64 = PoolingResponse.model_validate(base64_response.json())
decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.data), dtype="float32").tolist()
)
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=decoded_responses_base64_data,
name_0="float32",
name_1="base64",
)
# Default response is float32 decoded from base64 by OpenAI Client
default_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
},
)
default_response.raise_for_status()
responses_default = PoolingResponse.model_validate(default_response.json())
default_data = [
np.array(d.data).squeeze(-1).tolist() for d in responses_default.data
]
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=default_data,
name_0="float32",
name_1="default",
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_base64_embed_dtype(server: RemoteOpenAIServer, model_name: str):
input_texts = [
"The best thing about vLLM is that it supports many different models",
]
url = server.url_for("pooling")
float_response = requests.post(
url,
json={
"model": model_name,
"input": input_texts,
"encoding_format": "float",
},
)
responses_float = PoolingResponse.model_validate(float_response.json())
float_data = [np.array(d.data).squeeze(-1).tolist() for d in responses_float.data]
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
responses_base64 = requests.post(
url,
json={
"model": model_name,
"input": input_texts,
"encoding_format": "base64",
"embed_dtype": embed_dtype,
},
)
base64_data = []
for data in responses_base64.json()["data"]:
base64_data.append(
torch.frombuffer(base64.b64decode(data["data"]), dtype=torch_dtype)
.to(torch.float32)
.tolist()
)
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=base64_data,
name_0="float_data",
name_1="base64_data",
tol=1e-2,
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_base64_embed_dtype_not_supported(
server: RemoteOpenAIServer, model_name: str
):
input_texts = [
"The best thing about vLLM is that it supports many different models",
]
bad_embed_dtype = "bad_embed_dtype"
responses_base64 = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "base64",
"embed_dtype": bad_embed_dtype,
},
)
assert responses_base64.status_code == 400
assert responses_base64.json()["error"]["message"].startswith(
f"embed_dtype={bad_embed_dtype!r} is not supported."
)
@pytest.mark.asyncio
async def test_invocations(server: RemoteOpenAIServer):
input_texts = [
"The chef prepared a delicious meal.",
]
request_args = {
"model": MODEL_NAME,
"input": input_texts,
"encoding_format": "float",
}
completion_response = requests.post(server.url_for("pooling"), json=request_args)
completion_response.raise_for_status()
invocation_response = requests.post(
server.url_for("invocations"), json=request_args
)
invocation_response.raise_for_status()
completion_output = completion_response.json()
invocation_output = invocation_response.json()
assert completion_output.keys() == invocation_output.keys()
for completion_data, invocation_data in zip(
completion_output["data"], invocation_output["data"]
):
assert completion_data.keys() == invocation_data.keys()
check_embeddings_close(
embeddings_0_lst=completion_data["data"],
embeddings_1_lst=invocation_data["data"],
name_0="completion",
name_1="invocation",
)
@pytest.mark.asyncio
async def test_invocations_conversation(server: RemoteOpenAIServer):
messages = [
{
"role": "user",
"content": "The cat sat on the mat.",
},
{
"role": "assistant",
"content": "A feline was resting on a rug.",
},
{
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
},
]
request_args = {
"model": MODEL_NAME,
"messages": messages,
"encoding_format": "float",
}
chat_response = requests.post(server.url_for("pooling"), json=request_args)
chat_response.raise_for_status()
invocation_response = requests.post(
server.url_for("invocations"), json=request_args
)
invocation_response.raise_for_status()
chat_output = chat_response.json()
invocation_output = invocation_response.json()
assert chat_output.keys() == invocation_output.keys()
for chat_data, invocation_data in zip(
chat_output["data"], invocation_output["data"]
):
assert chat_data.keys() == invocation_data.keys()
check_embeddings_close(
embeddings_0_lst=chat_data["data"],
embeddings_1_lst=invocation_data["data"],
name_0="chat",
name_1="invocation",
)