vllm/vllm/model_executor/models/phi3_small.py

469 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import math
from typing import Iterable, Optional, Set, Tuple, Union
import torch
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from vllm.attention import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
def load_column_parallel_weight(param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
tp = get_tensor_model_parallel_world_size()
rk = get_tensor_model_parallel_rank()
assert param.size(0) * tp == loaded_weight.size(0)
s = rk * param.size(0)
e = (rk + 1) * param.size(0)
loaded_weight = loaded_weight[s:e]
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
class HeadMajorQKVParallelLinear(QKVParallelLinear):
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
return load_column_parallel_weight(param, loaded_weight)
class HeadMajorColumnParallelLinear(MergedColumnParallelLinear):
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
return load_column_parallel_weight(param, loaded_weight)
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def gegelu(input, limit: Optional[float] = None):
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
if limit is not None:
a_gelu = torch.where(torch.isinf(a_gelu), a_gelu,
a_gelu.clamp(min=None, max=limit))
a_linear = torch.where(
torch.isinf(a_linear),
a_linear,
a_linear.clamp(min=-limit, max=limit),
)
out_gelu = quick_gelu(a_gelu)
return out_gelu * (a_linear + 1)
class Phi3SmallMLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
assert (self.config.hidden_act == "gegelu"
), "Only `gegelu` is supported for the 4.7 series of models .."
self.hidden_size = config.hidden_size
self.gegelu_limit = config.gegelu_limit
self.intermediate_size = config.intermediate_size
self.up_proj = HeadMajorColumnParallelLinear(
self.hidden_size,
2 * [self.intermediate_size],
bias=True,
quant_config=quant_config,
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
)
def forward(self, x):
gate_up, _ = self.up_proj(x)
x = gegelu(gate_up)
x, _ = self.down_proj(x)
return x
class Phi3SmallSelfAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.sparse_block_size = config.blocksparse_block_size
self.homo_heads = config.blocksparse_homo_head_pattern
self.local_blocks = config.blocksparse_num_local_blocks
self.vert_stride = config.blocksparse_vert_stride
assert (config.blocksparse_block_size ==
config.blocksparse_triton_kernel_block_size)
self.hidden_size = config.hidden_size
# Number of Query Heads
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.tp_size = get_tensor_model_parallel_world_size()
# Number of total Key Value Heads before tensor parallel
self.num_key_value_heads = config.num_key_value_heads
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
if self.tp_size > 1:
assert self.num_key_value_heads % self.tp_size == 0
self.num_kv_heads_per_partion = max(
1, self.num_key_value_heads // self.tp_size)
self.num_heads_per_partition = self.num_heads // self.tp_size
self.max_position_embeddings = config.max_position_embeddings
self.rope_embedding_base = config.rope_embedding_base
self.rope_position_scale = config.rope_position_scale
self.is_causal = True
norm_factor = None
if config.mup_use_scaling:
norm_factor = self.head_dim / config.mup_attn_multiplier
else:
norm_factor = math.sqrt(self.head_dim)
self.scale = 1 / norm_factor
self.query_key_value = HeadMajorQKVParallelLinear(
self.hidden_size,
self.head_dim,
self.num_heads,
self.num_key_value_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config)
if getattr(self.config, "rope_scaling", None) is not None:
rope_scaling = self.config.rope_scaling
for key in rope_scaling:
if isinstance(rope_scaling[key], list):
rope_scaling[key] = tuple(rope_scaling[key])
if "factor" not in rope_scaling:
rope_scaling["factor"] = self.rope_position_scale
else:
rope_scaling = {
"rope_type": "linear",
"factor": self.rope_position_scale,
}
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_embedding_base,
rope_scaling=rope_scaling,
)
# blocksparse params
self.blocksparse_block_size = config.blocksparse_block_size
self.blocksparse_num_local_blocks = config.blocksparse_num_local_blocks
self.blocksparse_vert_stride = config.blocksparse_vert_stride
use_dense_attn = (getattr(self.config,
"dense_attention_every_n_layers", None)
and (self.layer_idx + 1) %
self.config.dense_attention_every_n_layers == 0)
bs_params = None
if not use_dense_attn:
bs_params = {
'max_seqlen': self.max_position_embeddings,
'num_heads': self.num_heads_per_partition,
"num_kv_heads": self.num_kv_heads_per_partion,
"block_size": self.sparse_block_size,
"local_blocks": self.local_blocks,
"vert_stride": self.vert_stride,
"homo_head": self.homo_heads
}
self.attn = Attention(self.num_heads_per_partition,
self.head_dim,
self.scale,
num_kv_heads=self.num_kv_heads_per_partion,
cache_config=cache_config,
quant_config=quant_config,
blocksparse_params=bs_params,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
qkv, _ = self.query_key_value(hidden_states)
qkv = qkv.view(qkv.shape[:-1] +
(-1, (self.num_q_per_kv + 2), self.head_dim))
q, k, v = qkv.split([self.num_q_per_kv, 1, 1], dim=-2)
# NOTE: this is required by RotaryEmbed, which indeed does not have to
# TODO: allow 3D QK for rotary forward
q = q.reshape(-1, self.head_dim * self.num_heads_per_partition)
k = k.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
v = v.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.dense(attn_output)
return output
class Phi3SmallDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(config,
layer_idx,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn")
self.mlp = Phi3SmallMLP(config, quant_config)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Phi3SmallModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Phi3SmallDecoderLayer(config,
int(prefix.split('.')[-1]),
cache_config,
quant_config,
prefix=prefix),
prefix=f"{prefix}.layers")
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
if (self.mup_embedding_multiplier is not None
and self.mup_embedding_multiplier > 0.0):
hidden_states = hidden_states * self.mup_embedding_multiplier
else:
assert intermediate_tensors
hidden_states = intermediate_tensors["hidden_states"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states = layer(positions, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class Phi3SmallForCausalLM(nn.Module, SupportsPP):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = Phi3SmallModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.vocab_size = config.vocab_size
self.mup_width_multiplier = config.mup_width_multiplier
self.lm_head = ParallelLMHead(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
# tokens in tiktoken but not used
if hasattr(config, 'dummy_token_indices'):
device = self.lm_head.weight.device
self.register_buffer('dummy_token_indices',
torch.LongTensor(
config.dummy_token_indices).to(device),
persistent=False)
else:
self.dummy_token_indices = None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
if self.dummy_token_indices is not None and logits is not None:
logits.index_fill_(-1, self.dummy_token_indices, -torch.inf)
return logits
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
output_hidden_states = self.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
output_hidden_states = output_hidden_states
return output_hidden_states
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits / self.mup_width_multiplier,
sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
if "lm_head.weight" in name and self.config.tie_word_embeddings:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params