2024-10-21 12:50:16 -04:00

428 lines
18 KiB
Python

# coding=utf-8
"""PyTorch MAMBA model."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import MambaConfig
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
composed_weight_loader, default_weight_loader, sharded_weight_loader)
from vllm.model_executor.models.interfaces import (HasInnerState,
IsAttentionFree)
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import IntermediateTensors
from vllm.worker.model_runner import (_BATCH_SIZES_TO_CAPTURE,
_get_graph_batch_size)
KVCache = Tuple[torch.Tensor, torch.Tensor]
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
class MambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute
the `contextualized_states`. A, D are input independent
(see Mamba paper [1] Section 3.5.2 "Interpretation of A"
for why A isn't selective) ∆, B, C are input-dependent
(this is a key difference between Mamba and the linear time
invariant S4, and is why Mamba is called
**selective** state spaces)
"""
def __init__(self, config: MambaConfig, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = int(config.time_step_rank)
self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.conv1d = ColumnParallelLinear(
input_size=self.conv_kernel_size,
output_size=self.intermediate_size,
bias=config.use_conv_bias,
)
# unsqueeze to fit conv1d weights shape into the linear weights shape.
# Can't do this in `weight_loader` since it already exists in
# `ColumnParallelLinear` and `set_weight_attrs`
# doesn't allow to override it
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
self.in_proj = MergedColumnParallelLinear(self.hidden_size,
[self.intermediate_size] * 2,
bias=config.use_bias)
# selective projection used to make dt, B and C input dependent
self.x_proj = RowParallelLinear(
self.intermediate_size,
self.time_step_rank + self.ssm_state_size * 2,
bias=False,
)
# time step projection (discretization) -
# In the forward we need to apply dt_proj without the bias,
# as the bias is added in the selective scan kernel.
self.dt_proj = ColumnParallelLinear(self.time_step_rank,
self.intermediate_size,
bias=True,
skip_bias_add=True)
tp_size = get_tensor_model_parallel_world_size()
self.A = nn.Parameter(
torch.empty(
self.intermediate_size // tp_size,
self.ssm_state_size,
dtype=torch.float32,
))
self.D = nn.Parameter(torch.ones(self.intermediate_size // tp_size))
set_weight_attrs(self.D, {"weight_loader": sharded_weight_loader(0)})
a_weight_loader = composed_weight_loader(
sharded_weight_loader(0), lambda x: -torch.exp(x.float()))
set_weight_attrs(self.A, {"weight_loader": a_weight_loader})
self.out_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=config.use_bias,
input_is_parallel=True,
)
self.activation = config.hidden_act
if self.is_falcon_mamba:
self.dt_layernorm = RMSNorm(self.time_step_rank,
eps=config.mixer_rms_eps)
self.b_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)
self.c_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)
def forward(self, hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams):
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states)[0].transpose(-2, -1)
hidden_states, gate = projected_states.chunk(2, dim=-2)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0),
self.conv1d.weight.size(2))
if attn_metadata.query_start_loc is not None \
and attn_metadata.context_lens_tensor is not None:
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
hidden_states = causal_conv1d_fn(
hidden_states,
conv_weights,
self.conv1d.bias,
activation=self.activation,
conv_states=mamba_cache_params.conv_state,
has_initial_state=attn_metadata.context_lens_tensor > 0,
cache_indices=mamba_cache_params.state_indices_tensor,
query_start_loc=attn_metadata.query_start_loc)
else:
hidden_states = causal_conv1d_update(
hidden_states.transpose(0, 1),
mamba_cache_params.conv_state,
conv_weights,
self.conv1d.bias,
self.activation,
conv_state_indices=mamba_cache_params.state_indices_tensor)
hidden_states = hidden_states.transpose(0, 1)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(-2, -1))[0]
time_step, B, C = torch.split(
ssm_parameters,
[self.time_step_rank, self.ssm_state_size, self.ssm_state_size],
dim=-1,
)
# Note that Jamba and FalconMamba normalizes B, C, and time_step here
# but Mamba doesn't.
if self.is_falcon_mamba:
time_step = self.dt_layernorm(time_step.contiguous())
B = self.b_layernorm(B.contiguous())
C = self.c_layernorm(C.contiguous())
discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1)
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = (self.dt_proj.bias.float() if hasattr(
self.dt_proj, "bias") else None)
if attn_metadata.query_start_loc is not None \
and attn_metadata.context_lens_tensor is not None:
scan_outputs = selective_scan_fn(
hidden_states,
mamba_cache_params.ssm_state,
discrete_time_step,
self.A,
B.transpose(-2, -1),
C.transpose(-2, -1),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
cache_indices=mamba_cache_params.state_indices_tensor,
has_initial_state=attn_metadata.context_lens_tensor > 0,
query_start_loc=attn_metadata.query_start_loc)
else:
scan_outputs = selective_state_update(
mamba_cache_params.ssm_state,
hidden_states.transpose(0, 1),
discrete_time_step.transpose(0, 1),
self.A,
B,
C,
self.D,
gate.transpose(0, 1),
time_proj_bias,
dt_softplus=True,
state_batch_indices=mamba_cache_params.state_indices_tensor)
scan_outputs = scan_outputs.transpose(0, 1)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(-2,
-1))[0]
return contextualized_states
class MambaDecoderLayer(nn.Module):
def __init__(self,
config: MambaConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.mixer = MambaMixer(config, layer_idx)
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states, attn_metadata,
mamba_cache_params)
return hidden_states, residual
class MambaModel(nn.Module):
def __init__(
self,
config: MambaConfig,
quant_config: Optional[QuantizationConfig] = None,
cache_config: Optional[CacheConfig] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embeddings = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
decoder_layers = []
for i in range(config.num_hidden_layers):
decoder_layers.append(
MambaDecoderLayer(config,
layer_idx=i,
cache_config=cache_config,
quant_config=quant_config))
self.layers = nn.ModuleList(decoder_layers)
self.norm_f = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams,
) -> torch.Tensor:
hidden_states = self.embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
attn_metadata=attn_metadata,
residual=residual,
mamba_cache_params=mamba_cache_params.at_layer_idx(i))
hidden_states, _ = self.norm_f(hidden_states, residual)
return hidden_states
class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
def __init__(
self,
config: MambaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
scheduler_config: Optional[SchedulerConfig] = None,
) -> None:
assert not cache_config.enable_prefix_caching, \
"Mamba does not support prefix caching"
super().__init__()
self.config = config
self.scheduler_config = scheduler_config
self.backbone = MambaModel(config,
cache_config=cache_config,
quant_config=quant_config,
lora_config=lora_config)
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
if config.tie_word_embeddings:
self.lm_head = self.backbone.embeddings
else:
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.sampler = Sampler()
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs):
if self.mamba_cache is None:
max_batch_size = (_get_graph_batch_size(
self.scheduler_config.max_num_seqs) if self.scheduler_config
else max(_BATCH_SIZES_TO_CAPTURE) + 2)
self.mamba_cache = MambaCacheManager(
self.lm_head.weight.dtype, self.config.num_hidden_layers,
max_batch_size, *self._get_mamba_cache_shape())
(
mamba_cache_tensors,
state_indices_tensor,
) = self.mamba_cache.current_run_tensors(input_ids, attn_metadata,
**kwargs)
mamba_cache_params = MambaCacheParams(mamba_cache_tensors[0],
mamba_cache_tensors[1],
state_indices_tensor)
hidden_states = self.backbone(input_ids, positions, attn_metadata,
mamba_cache_params)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def _get_mamba_cache_shape(
self) -> Tuple[Tuple[int, int], Tuple[int, int]]:
world_size = get_tensor_model_parallel_world_size()
conv_state_shape = (
self.config.intermediate_size // world_size,
self.config.conv_kernel - 1,
)
temporal_state_shape = (
self.config.intermediate_size // world_size,
self.config.state_size,
)
return conv_state_shape, temporal_state_shape
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "A_log" in name:
name = name.replace("A_log", "A")
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)