mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 22:46:01 +08:00
407 lines
15 KiB
Python
407 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import asyncio
|
|
import io
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import Annotated
|
|
|
|
import pybase64
|
|
import torch
|
|
from pydantic import Field
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.inputs.data import EmbedsPrompt as EngineEmbedsPrompt
|
|
from vllm.inputs.data import TextPrompt as EngineTextPrompt
|
|
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
|
from vllm.inputs.parse import get_prompt_components, parse_raw_prompts
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.utils.asyncio import AsyncMicrobatchTokenizer
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class RenderConfig:
|
|
"""Configuration to control how prompts are prepared."""
|
|
|
|
max_length: int | None = None
|
|
"""Maximum allowable total input token length. If provided,
|
|
token inputs longer than this raise ``ValueError``."""
|
|
|
|
truncate_prompt_tokens: int | None = None
|
|
"""Number of tokens to keep. ``None`` means no truncation.
|
|
``0`` yields an empty list (and skips embeds).
|
|
``-1`` maps to ``model_config.max_model_len``."""
|
|
|
|
add_special_tokens: bool | None = True
|
|
"""Whether to add model-specific special tokens during tokenization."""
|
|
|
|
cache_salt: str | None = None
|
|
"""String to disambiguate prefix cache entries."""
|
|
|
|
needs_detokenization: bool | None = False
|
|
"""If True, detokenize IDs back to text for inclusion in outputs."""
|
|
|
|
def verify_truncate_prompt_tokens(self, model_config: ModelConfig) -> int | None:
|
|
"""Validate and normalize `truncate_prompt_tokens` parameter."""
|
|
truncate_prompt_tokens = self.truncate_prompt_tokens
|
|
if truncate_prompt_tokens is None:
|
|
return None
|
|
|
|
if truncate_prompt_tokens == 0:
|
|
return 0
|
|
|
|
if truncate_prompt_tokens < 0:
|
|
truncate_prompt_tokens = model_config.max_model_len
|
|
|
|
max_length = self.max_length
|
|
if max_length is not None and truncate_prompt_tokens > max_length: # type: ignore[operator]
|
|
raise ValueError(
|
|
f"{truncate_prompt_tokens=} cannot be greater than "
|
|
f"{max_length=}. Please select a smaller truncation size."
|
|
)
|
|
|
|
return truncate_prompt_tokens
|
|
|
|
|
|
class BaseRenderer(ABC):
|
|
"""
|
|
Base class for unified input processing and rendering.
|
|
|
|
The Renderer serves as a unified input processor that consolidates
|
|
tokenization, chat template formatting, and multimodal input handling
|
|
into a single component.
|
|
It converts high-level API requests (OpenAI-style JSON) into token IDs and
|
|
multimodal features ready for engine consumption.
|
|
|
|
Key responsibilities:
|
|
- Convert text prompts to token sequences with proper special tokens
|
|
- Apply chat templates and format conversations
|
|
- Handle multimodal inputs (images, audio, etc.) when applicable
|
|
- Manage prompt truncation and length validation
|
|
- Provide clean separation between API layer and engine core
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
tokenizer: AnyTokenizer | None = None,
|
|
):
|
|
super().__init__()
|
|
self.model_config = model_config
|
|
self.tokenizer = tokenizer
|
|
|
|
@abstractmethod
|
|
async def render_prompt(
|
|
self,
|
|
*,
|
|
prompt_or_prompts: str | list[str] | list[int] | list[list[int]],
|
|
config: RenderConfig,
|
|
) -> list[EngineTokensPrompt]:
|
|
"""
|
|
Convert text or token inputs into engine-ready TokensPrompt objects.
|
|
|
|
This method accepts text or token inputs and produces a
|
|
list of [`TokensPrompt`][vllm.inputs.data.TokensPrompt] objects
|
|
for the engine.
|
|
|
|
Args:
|
|
prompt_or_prompts: One of:
|
|
- ``str``: Single text prompt.
|
|
- ``list[str]``: Batch of text prompts.
|
|
- ``list[int]``: Single pre-tokenized sequence.
|
|
- ``list[list[int]]``: Batch of pre-tokenized sequences.
|
|
config: Render configuration controlling how prompts are prepared
|
|
(e.g., tokenization and length handling).
|
|
|
|
Returns:
|
|
list[EngineTokensPrompt]: Engine-ready token prompts.
|
|
|
|
Raises:
|
|
ValueError: If input formats are invalid or length limits exceeded.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
async def render_prompt_and_embeds(
|
|
self,
|
|
*,
|
|
prompt_or_prompts: str | list[str] | list[int] | list[list[int]] | None = None,
|
|
prompt_embeds: bytes | list[bytes] | None = None,
|
|
config: RenderConfig,
|
|
) -> list[EngineTokensPrompt | EngineEmbedsPrompt]:
|
|
"""
|
|
Convert text/token and/or base64-encoded embeddings inputs into
|
|
engine-ready prompt objects using a unified RenderConfig.
|
|
|
|
At least one of ``prompt_or_prompts`` or ``prompt_embeds`` must be
|
|
provided and non-empty. If both are omitted or empty (e.g., empty
|
|
string and empty list), a ``ValueError`` is raised.
|
|
|
|
Args:
|
|
prompt_or_prompts: Text or token inputs to include.
|
|
prompt_embeds: Base64-encoded bytes (or list thereof) containing a
|
|
torch-saved tensor to be used as prompt embeddings.
|
|
config: Render configuration controlling how prompts are prepared
|
|
(e.g., tokenization and length handling).
|
|
|
|
Returns:
|
|
list[Union[EngineTokensPrompt, EngineEmbedsPrompt]]:
|
|
Engine-ready prompt objects.
|
|
|
|
Raises:
|
|
ValueError: If both ``prompt_or_prompts`` and ``prompt_embeds``
|
|
are omitted or empty (decoder prompt cannot be empty), or if
|
|
length limits are exceeded.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def load_prompt_embeds(
|
|
cls,
|
|
prompt_embeds: bytes | list[bytes],
|
|
truncate_prompt_tokens: Annotated[int, Field(ge=0)] | None = None,
|
|
cache_salt: str | None = None,
|
|
) -> list[EngineEmbedsPrompt]:
|
|
"""Load and validate base64-encoded embeddings into prompt objects."""
|
|
|
|
def _load_and_validate_embed(embed: bytes) -> EngineEmbedsPrompt:
|
|
tensor = torch.load(
|
|
io.BytesIO(pybase64.b64decode(embed, validate=True)),
|
|
weights_only=True,
|
|
map_location=torch.device("cpu"),
|
|
)
|
|
assert isinstance(tensor, torch.Tensor) and tensor.dtype in (
|
|
torch.float32,
|
|
torch.bfloat16,
|
|
torch.float16,
|
|
)
|
|
tensor = tensor.to_dense()
|
|
if tensor.dim() > 2:
|
|
tensor = tensor.squeeze(0)
|
|
assert tensor.dim() == 2
|
|
if truncate_prompt_tokens is not None:
|
|
tensor = tensor[-truncate_prompt_tokens:]
|
|
embeds_prompt = EngineEmbedsPrompt(prompt_embeds=tensor)
|
|
if cache_salt is not None:
|
|
embeds_prompt["cache_salt"] = cache_salt
|
|
return embeds_prompt
|
|
|
|
if isinstance(prompt_embeds, list):
|
|
return [_load_and_validate_embed(embed) for embed in prompt_embeds]
|
|
|
|
return [_load_and_validate_embed(prompt_embeds)]
|
|
|
|
|
|
class CompletionRenderer(BaseRenderer):
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
tokenizer: AnyTokenizer | None = None,
|
|
async_tokenizer_pool: dict[AnyTokenizer, AsyncMicrobatchTokenizer]
|
|
| None = None,
|
|
):
|
|
super().__init__(model_config, tokenizer)
|
|
self.async_tokenizer_pool = async_tokenizer_pool
|
|
self.async_tokenizer: AsyncMicrobatchTokenizer | None = None
|
|
|
|
async def render_prompt(
|
|
self,
|
|
*,
|
|
prompt_or_prompts: str | list[str] | list[int] | list[list[int]],
|
|
config: RenderConfig,
|
|
) -> list[EngineTokensPrompt]:
|
|
"""Implementation of prompt rendering for completion-style requests.
|
|
|
|
Uses async tokenizer pooling for improved performance. See base class
|
|
for detailed parameter documentation.
|
|
"""
|
|
truncate_prompt_tokens = config.verify_truncate_prompt_tokens(self.model_config)
|
|
if truncate_prompt_tokens == 0:
|
|
return []
|
|
|
|
tasks = (
|
|
self._create_prompt(
|
|
prompt_input,
|
|
config=config,
|
|
truncate_prompt_tokens=truncate_prompt_tokens,
|
|
)
|
|
for prompt_input in parse_raw_prompts(prompt_or_prompts)
|
|
)
|
|
|
|
return await asyncio.gather(*tasks)
|
|
|
|
async def render_prompt_and_embeds(
|
|
self,
|
|
*,
|
|
prompt_or_prompts: str | list[str] | list[int] | list[list[int]] | None = None,
|
|
prompt_embeds: bytes | list[bytes] | None = None,
|
|
config: RenderConfig,
|
|
) -> list[EngineTokensPrompt | EngineEmbedsPrompt]:
|
|
"""
|
|
Render text/token prompts and/or precomputed embedding prompts. At
|
|
least one of `prompt_or_prompts` or `prompt_embeds` must be provided.
|
|
"""
|
|
truncate_prompt_tokens = config.verify_truncate_prompt_tokens(self.model_config)
|
|
if truncate_prompt_tokens == 0:
|
|
return []
|
|
|
|
rendered: list[EngineTokensPrompt | EngineEmbedsPrompt] = []
|
|
|
|
if prompt_embeds is not None:
|
|
rendered.extend(
|
|
self.load_prompt_embeds(
|
|
prompt_embeds, truncate_prompt_tokens, config.cache_salt
|
|
)
|
|
)
|
|
if prompt_or_prompts is None or prompt_or_prompts == "":
|
|
return rendered
|
|
|
|
token_prompts = await self.render_prompt(
|
|
prompt_or_prompts=prompt_or_prompts,
|
|
config=config,
|
|
)
|
|
rendered.extend(token_prompts)
|
|
|
|
return rendered
|
|
|
|
def _maybe_apply_truncation(
|
|
self, token_ids: list[int], truncate_prompt_tokens: int | None
|
|
) -> list[int]:
|
|
"""Apply truncation to token sequence."""
|
|
if truncate_prompt_tokens is None:
|
|
return token_ids
|
|
if truncate_prompt_tokens >= len(token_ids):
|
|
return token_ids
|
|
|
|
return token_ids[-truncate_prompt_tokens:]
|
|
|
|
async def _create_prompt(
|
|
self,
|
|
prompt_input: EngineTextPrompt | EngineTokensPrompt,
|
|
config: RenderConfig,
|
|
truncate_prompt_tokens: int | None,
|
|
) -> EngineTokensPrompt:
|
|
prompt, prompt_token_ids, _ = get_prompt_components(prompt_input)
|
|
|
|
if prompt_token_ids is not None:
|
|
# NOTE: detokenization is needed when echo is enabled,
|
|
# where the input token IDs are decoded back to text.
|
|
return await self._create_prompt_from_token_ids(
|
|
prompt_token_ids,
|
|
config.max_length,
|
|
truncate_prompt_tokens,
|
|
config.cache_salt,
|
|
config.needs_detokenization,
|
|
)
|
|
|
|
if prompt is not None:
|
|
return await self._create_prompt_from_text(
|
|
prompt,
|
|
config.max_length,
|
|
truncate_prompt_tokens,
|
|
config.add_special_tokens,
|
|
config.cache_salt,
|
|
)
|
|
|
|
# TODO: Also handle embeds prompt using this method
|
|
raise NotImplementedError
|
|
|
|
async def _create_prompt_from_text(
|
|
self,
|
|
text: str,
|
|
max_length: int | None,
|
|
truncate_prompt_tokens: int | None,
|
|
add_special_tokens: bool | None,
|
|
cache_salt: str | None,
|
|
) -> EngineTokensPrompt:
|
|
"""Tokenize text input asynchronously."""
|
|
async_tokenizer = self._get_async_tokenizer()
|
|
|
|
# Handle encoder-specific preprocessing
|
|
if (
|
|
self.model_config.encoder_config is not None
|
|
and self.model_config.encoder_config.get("do_lower_case", False)
|
|
):
|
|
text = text.lower()
|
|
|
|
# Tokenize texts
|
|
if truncate_prompt_tokens is None:
|
|
encoded = await async_tokenizer(text, add_special_tokens=add_special_tokens)
|
|
else:
|
|
encoded = await async_tokenizer(
|
|
text,
|
|
add_special_tokens=add_special_tokens,
|
|
truncation=True,
|
|
max_length=truncate_prompt_tokens,
|
|
)
|
|
|
|
return self._create_tokens_prompt(
|
|
encoded.input_ids, max_length, cache_salt, text
|
|
)
|
|
|
|
async def _create_prompt_from_token_ids(
|
|
self,
|
|
token_ids: list[int],
|
|
max_length: int | None,
|
|
truncate_prompt_tokens: int | None,
|
|
cache_salt: str | None,
|
|
needs_detokenization: bool | None = False,
|
|
) -> EngineTokensPrompt:
|
|
"""Optionally detokenize token IDs and build a tokens prompt."""
|
|
token_ids = self._maybe_apply_truncation(token_ids, truncate_prompt_tokens)
|
|
|
|
prompt = None
|
|
if needs_detokenization:
|
|
async_tokenizer = self._get_async_tokenizer()
|
|
prompt = await async_tokenizer.decode(token_ids)
|
|
|
|
return self._create_tokens_prompt(
|
|
token_ids=token_ids,
|
|
max_length=max_length,
|
|
cache_salt=cache_salt,
|
|
prompt=prompt,
|
|
)
|
|
|
|
def _get_async_tokenizer(self) -> AsyncMicrobatchTokenizer:
|
|
"""Get or create async tokenizer using shared pool."""
|
|
async_tokenizer = self.async_tokenizer
|
|
if async_tokenizer is not None:
|
|
return async_tokenizer
|
|
|
|
tokenizer = self.tokenizer
|
|
if self.tokenizer is None:
|
|
raise ValueError("No tokenizer available for text input processing")
|
|
|
|
if self.async_tokenizer_pool is None:
|
|
async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
|
|
else:
|
|
async_tokenizer = self.async_tokenizer_pool.get(tokenizer)
|
|
if async_tokenizer is None:
|
|
async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
|
|
self.async_tokenizer_pool[tokenizer] = async_tokenizer
|
|
self.async_tokenizer = async_tokenizer
|
|
return async_tokenizer
|
|
|
|
def _create_tokens_prompt(
|
|
self,
|
|
token_ids: list[int],
|
|
max_length: int | None = None,
|
|
cache_salt: str | None = None,
|
|
prompt: str | None = None,
|
|
) -> EngineTokensPrompt:
|
|
"""Create validated EngineTokensPrompt."""
|
|
if max_length is not None and len(token_ids) > max_length:
|
|
raise ValueError(
|
|
f"This model's maximum context length is {max_length} tokens. "
|
|
f"However, your request has {len(token_ids)} input tokens. "
|
|
"Please reduce the length of the input messages."
|
|
)
|
|
|
|
tokens_prompt = EngineTokensPrompt(prompt_token_ids=token_ids)
|
|
if cache_salt is not None:
|
|
tokens_prompt["cache_salt"] = cache_salt
|
|
if prompt is not None:
|
|
tokens_prompt["prompt"] = prompt
|
|
return tokens_prompt
|