vllm/tests/model_executor/test_eagle_quantization.py
Shreyas Kulkarni 95ae50b7d1
[Quantization] [Eagle] Add complete quantization support to the draft model in Eagle (#28435)
Signed-off-by: Shreyas Kulkarni <shreyas.gp269@gmail.com>
2025-11-17 15:01:34 -08:00

170 lines
5.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import Mock, patch
import pytest
import torch
from vllm.config import LoadConfig, ModelConfig, SpeculativeConfig, VllmConfig
from vllm.model_executor.models.utils import get_draft_quant_config
from vllm.platforms import current_platform
DEVICES = (
[f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
if current_platform.is_cuda_alike()
else ["cpu"]
)
def test_get_draft_quant_config_with_draft_model():
mock_draft_model_config = Mock(spec=ModelConfig)
mock_load_config = Mock(spec=LoadConfig)
mock_speculative_config = Mock(spec=SpeculativeConfig)
mock_speculative_config.draft_model_config = mock_draft_model_config
mock_vllm_config = Mock(spec=VllmConfig)
mock_vllm_config.speculative_config = mock_speculative_config
mock_vllm_config.load_config = mock_load_config
mock_quant_config = Mock()
with patch.object(
VllmConfig, "get_quantization_config", return_value=mock_quant_config
):
result = get_draft_quant_config(mock_vllm_config)
# Verify the function calls get_quantization_config with draft model config
VllmConfig.get_quantization_config.assert_called_once_with(
mock_draft_model_config, mock_load_config
)
assert result == mock_quant_config
def test_get_draft_quant_config_without_draft_model():
mock_speculative_config = Mock(spec=SpeculativeConfig)
mock_speculative_config.draft_model_config = None
mock_vllm_config = Mock(spec=VllmConfig)
mock_vllm_config.speculative_config = mock_speculative_config
mock_vllm_config.load_config = Mock(spec=LoadConfig)
result = get_draft_quant_config(mock_vllm_config)
assert result is None
@torch.inference_mode()
@pytest.mark.parametrize("device", DEVICES)
def test_fc_layer_quant_config_usage(dist_init, device) -> None:
import torch
from vllm.model_executor.layers.linear import ReplicatedLinear
if current_platform.is_cuda_alike():
torch.cuda.set_device(device)
torch.set_default_device(device)
input_size = 256
output_size = 128
fc_no_quant = ReplicatedLinear(
input_size=input_size,
output_size=output_size,
bias=False,
params_dtype=torch.float16,
quant_config=None,
prefix="fc",
)
assert fc_no_quant.quant_config is None
assert fc_no_quant.input_size == input_size
assert fc_no_quant.output_size == output_size
mock_quant_config = Mock()
fc_with_quant = ReplicatedLinear(
input_size=input_size,
output_size=output_size,
bias=False,
params_dtype=torch.float16,
quant_config=mock_quant_config,
prefix="fc",
)
assert fc_with_quant.quant_config == mock_quant_config
# Check forward pass
x = torch.randn(2, input_size, dtype=torch.float16)
output, _ = fc_no_quant(x)
assert output.shape == (2, output_size)
def test_kv_cache_scale_name_handling():
# Mock a quant config that supports cache scales
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value="layers.0.self_attn.kv_scale")
# Condition check in load_weights
name = "layers.0.self_attn.k_proj.weight"
scale_name = mock_quant_config.get_cache_scale(name)
# Check if get_cache_scale is called and returns expected value
mock_quant_config.get_cache_scale.assert_called_once_with(name)
assert scale_name == "layers.0.self_attn.kv_scale"
def test_kv_cache_scale_name_no_scale():
# Mock a quant config that returns None for get_cache_scale
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value=None)
name = "layers.0.mlp.gate_proj.weight"
scale_name = mock_quant_config.get_cache_scale(name)
# Should return None for weights that don't have cache scales
assert scale_name is None
def test_maybe_remap_kv_scale_name():
from vllm.model_executor.model_loader.weight_utils import maybe_remap_kv_scale_name
params_dict = {
"layers.0.self_attn.kv_scale": Mock(),
"layers.1.self_attn.kv_scale": Mock(),
}
name = "layers.0.self_attn.some_scale"
remapped = maybe_remap_kv_scale_name(name, params_dict)
assert remapped in params_dict or remapped == name or remapped is None
def test_load_weights_kv_scale_handling():
kv_scale_param = Mock()
kv_scale_param.weight_loader = Mock()
params_dict = {
"layers.0.self_attn.kv_scale": kv_scale_param,
}
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value="layers.0.self_attn.kv_scale")
# Load_weights logic for KV cache scales
name = "layers.0.self_attn.k_proj.weight"
loaded_weight_tensor = torch.tensor([1.0, 2.0])
if mock_quant_config is not None:
scale_name = mock_quant_config.get_cache_scale(name)
if scale_name:
param = params_dict[scale_name]
assert param is kv_scale_param
weight_to_load = (
loaded_weight_tensor
if loaded_weight_tensor.dim() == 0
else loaded_weight_tensor[0]
)
assert scale_name == "layers.0.self_attn.kv_scale"
assert weight_to_load == loaded_weight_tensor[0]