vllm/vllm/v1/engine/output_processor.py
Mark McLoughlin f790068600
[Core] Add a random suffix to frontend-provided request IDs (#27987)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-12-23 13:05:39 -08:00

710 lines
27 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
from collections import defaultdict
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any, cast
import torch
from vllm.lora.request import LoRARequest
from vllm.outputs import (
CompletionOutput,
PoolingOutput,
PoolingRequestOutput,
RequestOutput,
)
from vllm.sampling_params import RequestOutputKind
from vllm.tokenizers import TokenizerLike
from vllm.tracing import SpanAttributes, SpanKind, Tracer, extract_trace_context
from vllm.utils import length_from_prompt_token_ids_or_embeds
from vllm.v1.engine import EngineCoreOutput, EngineCoreRequest, FinishReason
from vllm.v1.engine.detokenizer import IncrementalDetokenizer
from vllm.v1.engine.logprobs import LogprobsProcessor
from vllm.v1.engine.parallel_sampling import ParentRequest
from vllm.v1.metrics.stats import (
IterationStats,
LoRARequestStates,
RequestStateStats,
SchedulerStats,
)
class RequestOutputCollector:
"""
Collects streamed RequestOutputs per individual request,
for hand-off to the consuming asyncio generate task.
When streaming deltas, RequestOutputs are merged if the
producer gets ahead of the consumer.
"""
def __init__(self, output_kind: RequestOutputKind, request_id: str):
self.aggregate = output_kind == RequestOutputKind.DELTA
self.request_id = request_id
self.output: RequestOutput | PoolingRequestOutput | Exception | None = None
self.ready = asyncio.Event()
def put(self, output: RequestOutput | PoolingRequestOutput | Exception) -> None:
"""Non-blocking put operation."""
if self.output is None or isinstance(output, Exception):
self.output = output
self.ready.set()
elif isinstance(self.output, RequestOutput) and isinstance(
output, RequestOutput
):
# This ensures that request outputs with different request indexes
# (if n > 1) do not override each other.
self.output.add(output, aggregate=self.aggregate)
elif isinstance(self.output, PoolingRequestOutput) and isinstance(
output, PoolingRequestOutput
):
self.output = output
async def get(self) -> RequestOutput | PoolingRequestOutput:
"""Get operation blocks on put event."""
while (output := self.output) is None:
await self.ready.wait()
self.output = None
self.ready.clear()
if isinstance(output, Exception):
raise output
return output
def get_nowait(self) -> RequestOutput | PoolingRequestOutput | None:
"""Non-blocking get operation."""
output = self.output
if output is not None:
self.output = None
self.ready.clear()
if isinstance(output, Exception):
raise output
return output
@dataclass
class OutputProcessorOutput:
request_outputs: list[RequestOutput | PoolingRequestOutput]
reqs_to_abort: list[str]
class RequestState:
def __init__(
self,
request_id: str,
external_req_id: str,
parent_req: ParentRequest | None,
request_index: int,
lora_request: LoRARequest | None,
output_kind: RequestOutputKind,
prompt: str | None,
prompt_token_ids: list[int] | None,
prompt_embeds: torch.Tensor | None,
logprobs_processor: LogprobsProcessor | None,
detokenizer: IncrementalDetokenizer | None,
max_tokens_param: int | None,
arrival_time: float,
queue: RequestOutputCollector | None,
log_stats: bool,
stream_interval: int,
top_p: float | None = None,
n: int | None = None,
temperature: float | None = None,
):
self.request_id = request_id
self.external_req_id = external_req_id
self.parent_req = parent_req
self.request_index = request_index
self.lora_request = lora_request
self.lora_name = lora_request.lora_name if lora_request is not None else None
self.output_kind = output_kind
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.prompt_embeds = prompt_embeds
self.prompt_len = length_from_prompt_token_ids_or_embeds(
self.prompt_token_ids, self.prompt_embeds
)
self.logprobs_processor = logprobs_processor
self.detokenizer = detokenizer
self.max_tokens_param = max_tokens_param
self.top_p = top_p
self.n = n
self.temperature = temperature
self.is_prefilling = True
self.queue = queue
self.num_cached_tokens = 0
self.stats = RequestStateStats(arrival_time=arrival_time) if log_stats else None
# Stream Interval
self.stream_interval = stream_interval
self.sent_tokens_offset = 0 # Offset of sent tokens
@classmethod
def from_new_request(
cls,
tokenizer: TokenizerLike | None,
request: EngineCoreRequest,
prompt: str | None,
parent_req: ParentRequest | None,
request_index: int,
queue: RequestOutputCollector | None,
log_stats: bool,
stream_interval: int,
) -> "RequestState":
if sampling_params := request.sampling_params:
if not sampling_params.detokenize:
tokenizer = None
output_kind = sampling_params.output_kind
logprobs_processor = LogprobsProcessor.from_new_request(
tokenizer=tokenizer,
request=request,
)
detokenizer = IncrementalDetokenizer.from_new_request(
tokenizer=tokenizer,
request=request,
)
max_tokens_param = sampling_params.max_tokens
top_p = sampling_params.top_p
n = sampling_params.n
temperature = sampling_params.temperature
else:
logprobs_processor = None
detokenizer = None
max_tokens_param = None
top_p = None
n = None
temperature = None
assert request.pooling_params is not None
output_kind = request.pooling_params.output_kind
assert request.external_req_id is not None
return cls(
request_id=request.request_id,
external_req_id=request.external_req_id,
parent_req=parent_req,
request_index=request_index,
lora_request=request.lora_request,
output_kind=output_kind,
prompt=prompt,
prompt_token_ids=request.prompt_token_ids,
prompt_embeds=request.prompt_embeds,
logprobs_processor=logprobs_processor,
detokenizer=detokenizer,
max_tokens_param=max_tokens_param,
top_p=top_p,
n=n,
temperature=temperature,
arrival_time=request.arrival_time,
queue=queue,
log_stats=log_stats,
stream_interval=stream_interval,
)
def make_request_output(
self,
new_token_ids: list[int],
pooling_output: torch.Tensor | None,
finish_reason: FinishReason | None,
stop_reason: int | str | None,
kv_transfer_params: dict[str, Any] | None = None,
) -> RequestOutput | PoolingRequestOutput | None:
finished = finish_reason is not None
final_only = self.output_kind == RequestOutputKind.FINAL_ONLY
if not finished and final_only:
# Only the final output is required in FINAL_ONLY mode.
return None
if self.stream_interval > 1:
assert self.detokenizer is not None
# Send output request only when
# 1. It has finished, or
# 2. It is the first token, or
# 3. It has reached the stream interval number of tokens
if not (
finished
or self.sent_tokens_offset == 0
or len(self.detokenizer.output_token_ids) - self.sent_tokens_offset
>= self.stream_interval
):
return None
if self.output_kind == RequestOutputKind.DELTA:
# Send tokens from the offset in DELTA mode, otherwise all
# tokens are sent.
new_token_ids = self.detokenizer.output_token_ids[
self.sent_tokens_offset :
]
self.sent_tokens_offset = len(self.detokenizer.output_token_ids)
external_req_id = self.external_req_id
if pooling_output is not None:
return self._new_request_output(
external_req_id,
[self._new_pooling_output(pooling_output)],
finished,
)
output = self._new_completion_output(new_token_ids, finish_reason, stop_reason)
if self.parent_req is None:
outputs = [output]
else:
outputs, finished = self.parent_req.get_outputs(self.request_id, output)
if not outputs:
return None
external_req_id = self.parent_req.external_req_id
return self._new_request_output(
external_req_id, outputs, finished, kv_transfer_params
)
def _new_request_output(
self,
external_req_id: str,
outputs: list[CompletionOutput] | list[PoolingOutput],
finished: bool,
kv_transfer_params: dict[str, Any] | None = None,
) -> RequestOutput | PoolingRequestOutput:
first_output = outputs[0]
if isinstance(first_output, PoolingOutput):
assert len(outputs) == 1
# Prompt embeddings are currently not supported by pooling requests.
assert self.prompt_token_ids is not None
return PoolingRequestOutput(
request_id=external_req_id,
outputs=first_output,
num_cached_tokens=self.num_cached_tokens,
prompt_token_ids=self.prompt_token_ids,
finished=finished,
)
assert self.logprobs_processor is not None
if self.output_kind == RequestOutputKind.DELTA:
# Side effect: logprobs processor forgets prompt logprobs
prompt_logprobs = self.logprobs_processor.pop_prompt_logprobs()
else:
prompt_logprobs = self.logprobs_processor.prompt_logprobs
# If prompt embeds were used, put placeholder prompt token ids
prompt_token_ids = self.prompt_token_ids
if prompt_token_ids is None and self.prompt_embeds is not None:
prompt_token_ids = [0] * len(self.prompt_embeds)
return RequestOutput(
request_id=external_req_id, # request_id is what was provided externally
lora_request=self.lora_request,
prompt=self.prompt,
prompt_token_ids=prompt_token_ids,
prompt_logprobs=prompt_logprobs,
outputs=cast(list[CompletionOutput], outputs),
finished=finished,
kv_transfer_params=kv_transfer_params,
num_cached_tokens=self.num_cached_tokens,
metrics=self.stats,
)
def _new_completion_output(
self,
token_ids: list[int],
finish_reason: FinishReason | None,
stop_reason: int | str | None,
) -> CompletionOutput:
assert self.detokenizer is not None
assert self.logprobs_processor is not None
finished = finish_reason is not None
delta = self.output_kind == RequestOutputKind.DELTA
# Prepare text and token_ids, based on delta mode
text = self.detokenizer.get_next_output_text(finished, delta)
if not delta:
token_ids = self.detokenizer.output_token_ids
# Prepare logprobs, based on delta mode
logprobs = self.logprobs_processor.logprobs
if delta and logprobs:
logprobs = logprobs[-len(token_ids) :]
return CompletionOutput(
index=self.request_index,
text=text,
token_ids=token_ids,
logprobs=logprobs,
cumulative_logprob=self.logprobs_processor.cumulative_logprob,
finish_reason=str(finish_reason) if finished else None,
stop_reason=stop_reason if finished else None,
)
def _new_pooling_output(
self,
pooling_output: torch.Tensor,
) -> PoolingOutput:
return PoolingOutput(data=pooling_output)
class OutputProcessor:
"""Process EngineCoreOutputs into RequestOutputs."""
def __init__(
self,
tokenizer: TokenizerLike | None,
log_stats: bool,
stream_interval: int = 1,
):
self.log_stats = log_stats
self.tokenizer = tokenizer
self.stream_interval = stream_interval
self.request_states: dict[str, RequestState] = {}
self.parent_requests: dict[str, ParentRequest] = {}
self.external_req_ids: defaultdict[str, list[str]] = defaultdict(list)
self.lora_states = LoRARequestStates(log_stats)
self.tracer: Tracer | None = None
self._requests_drained = asyncio.Event()
self._requests_drained.set()
def get_num_unfinished_requests(self):
return len(self.request_states)
def has_unfinished_requests(self) -> bool:
return len(self.request_states) > 0
async def wait_for_requests_to_drain(self) -> None:
if not self.request_states:
return
await self._requests_drained.wait()
def propagate_error(self, e: Exception):
"""Propagate error to all generate() tasks."""
for _, state in self.request_states.items():
assert state.queue is not None
state.queue.put(e)
def abort_requests(self, request_ids: Iterable[str], internal: bool) -> list[str]:
"""Abort a list of requests.
The request_ids may be either external request IDs (those passed to
InputProcessor.process_inputs()) or internal request IDs (those randomly
generated when creating the EngineCoreRequest).
If an external request ID is provided, and that external request ID
was used for multiple requests, all requests associated with that external
request ID are aborted.
In the case of parallel sampling, a request ID may be used to identify
a parent request, in which case the associated child requests are aborted
also.
"""
internal_req_ids = []
for request_id in request_ids:
if internal:
# Internal ID - this may be a parent request
internal_req_ids.append(request_id)
# Remove internal ID from the external->internal mapping
if req_state := self.request_states.get(request_id):
external_req_id = req_state.external_req_id
internal_ids = self.external_req_ids[external_req_id]
internal_ids.remove(request_id)
if not internal_ids:
del self.external_req_ids[external_req_id]
elif internal_ids := self.external_req_ids.pop(request_id, []):
# External ID - abort all requests in the external->internal mapping
internal_req_ids.extend(internal_ids)
request_ids_to_abort = []
for request_id in internal_req_ids:
req_state = self.request_states.pop(request_id, None)
if req_state is not None:
self.lora_states.request_finished(request_id, req_state.lora_name)
request_ids_to_abort.append(request_id)
# Produce final abort output.
if req_state.queue is not None and (
request_output := req_state.make_request_output(
new_token_ids=[],
# Set pooling_output is not None to
# correctly enter the abort pooling branch
pooling_output=torch.randn(0, device="cpu")
if req_state.detokenizer is None
else None,
finish_reason=FinishReason.ABORT,
stop_reason=None,
kv_transfer_params=None,
)
):
req_state.queue.put(request_output)
elif parent := self.parent_requests.get(request_id):
# Abort children prior to removing the parent.
if parent.child_requests:
child_reqs = list(parent.child_requests)
child_reqs = self.abort_requests(child_reqs, internal=True)
request_ids_to_abort.extend(child_reqs)
self.parent_requests.pop(request_id, None)
if not self.request_states:
self._requests_drained.set()
return request_ids_to_abort
def add_request(
self,
request: EngineCoreRequest,
prompt: str | None,
parent_req: ParentRequest | None = None,
request_index: int = 0,
queue: RequestOutputCollector | None = None,
) -> None:
request_id = request.request_id
if request_id in self.request_states:
raise ValueError(f"Request id {request_id} already running.")
req_state = RequestState.from_new_request(
tokenizer=self.tokenizer,
request=request,
prompt=prompt,
parent_req=parent_req,
request_index=request_index,
queue=queue,
log_stats=self.log_stats,
stream_interval=self.stream_interval,
)
if self._requests_drained.is_set():
self._requests_drained.clear()
self.request_states[request_id] = req_state
if parent_req:
self.parent_requests[parent_req.request_id] = parent_req
# Track the external_req_id -> [internal_req_id, ...] mapping
self.external_req_ids[req_state.external_req_id].append(request_id)
def process_outputs(
self,
engine_core_outputs: list[EngineCoreOutput],
engine_core_timestamp: float | None = None,
iteration_stats: IterationStats | None = None,
) -> OutputProcessorOutput:
"""
Process the EngineCoreOutputs:
1) Compute stats for logging
2) Detokenize
3) Create and handle RequestOutput objects:
* If there is a queue (for usage with AsyncLLM),
put the RequestOutput objects into the queue for
handling by the per-request generate() tasks.
* If there is no queue (for usage with LLMEngine),
return a list of RequestOutput objects.
NOTE FOR DEVELOPERS
vLLM V1 minimizes the number of python loops over the full
batch to ensure system overheads are minimized. This is the
only function that should loop over EngineCoreOutputs.
If you need to touch every element of the batch, do it from
within the loop below.
"""
request_outputs: list[RequestOutput | PoolingRequestOutput] = []
reqs_to_abort: list[str] = []
for engine_core_output in engine_core_outputs:
req_id = engine_core_output.request_id
req_state = self.request_states.get(req_id)
if req_state is None:
# Ignore output for already-aborted request.
continue
# 1) Compute stats for this iteration.
self._update_stats_from_output(
req_state, engine_core_output, engine_core_timestamp, iteration_stats
)
new_token_ids = engine_core_output.new_token_ids
pooling_output = engine_core_output.pooling_output
finish_reason = engine_core_output.finish_reason
stop_reason = engine_core_output.stop_reason
kv_transfer_params = engine_core_output.kv_transfer_params
req_state.num_cached_tokens = engine_core_output.num_cached_tokens
req_state.is_prefilling = False
if pooling_output is None:
assert req_state.detokenizer is not None
assert req_state.logprobs_processor is not None
# 2) Detokenize the token ids into text and perform stop checks.
stop_string = req_state.detokenizer.update(
new_token_ids, finish_reason == FinishReason.STOP
)
if stop_string:
finish_reason = FinishReason.STOP
stop_reason = stop_string
# 3) Compute sample and prompt logprobs for request,
# if required.
req_state.logprobs_processor.update_from_output(engine_core_output)
# 4) Create and handle RequestOutput objects.
if request_output := req_state.make_request_output(
new_token_ids,
pooling_output,
finish_reason,
stop_reason,
kv_transfer_params,
):
if req_state.queue is not None:
# AsyncLLM: put into queue for handling by generate().
req_state.queue.put(request_output)
else:
# LLMEngine: return list of RequestOutputs.
request_outputs.append(request_output)
# Free completed requests.
if finish_reason is not None:
self.request_states.pop(req_id)
internal_ids = self.external_req_ids[req_state.external_req_id]
internal_ids.remove(req_id)
if not internal_ids:
del self.external_req_ids[req_state.external_req_id]
# Remove parent request if applicable.
parent_req = req_state.parent_req
if parent_req and not parent_req.child_requests:
self.parent_requests.pop(parent_req.request_id, None)
if not self.request_states:
self._requests_drained.set()
if not engine_core_output.finished:
# If req not finished in EngineCore, but Detokenizer
# detected stop string, abort needed in EngineCore.
reqs_to_abort.append(req_id)
# Track per-request stats
self._update_stats_from_finished(
req_state, finish_reason, iteration_stats
)
if self.tracer:
self.do_tracing(engine_core_output, req_state, iteration_stats)
return OutputProcessorOutput(
request_outputs=request_outputs,
reqs_to_abort=reqs_to_abort,
)
def update_scheduler_stats(self, scheduler_stats: SchedulerStats | None):
self.lora_states.update_scheduler_stats(scheduler_stats)
def do_tracing(
self,
engine_core_output: EngineCoreOutput,
req_state: RequestState,
iteration_stats: IterationStats | None,
) -> None:
assert req_state.stats is not None
assert iteration_stats is not None
assert self.tracer is not None
arrival_time_nano_seconds = int(req_state.stats.arrival_time * 1e9)
trace_context = extract_trace_context(engine_core_output.trace_headers)
prompt_length = length_from_prompt_token_ids_or_embeds(
req_state.prompt_token_ids, req_state.prompt_embeds
)
with self.tracer.start_as_current_span(
"llm_request",
kind=SpanKind.SERVER,
context=trace_context,
start_time=arrival_time_nano_seconds,
) as span:
metrics = req_state.stats
e2e_time = iteration_stats.iteration_timestamp - metrics.arrival_time
queued_time = metrics.scheduled_ts - metrics.queued_ts
prefill_time = metrics.first_token_ts - metrics.scheduled_ts
decode_time = metrics.last_token_ts - metrics.first_token_ts
inference_time = metrics.last_token_ts - metrics.scheduled_ts
span.set_attribute(
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN,
metrics.first_token_latency,
)
span.set_attribute(SpanAttributes.GEN_AI_LATENCY_E2E, e2e_time)
span.set_attribute(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE, queued_time)
span.set_attribute(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS, prompt_length)
span.set_attribute(
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS,
metrics.num_generation_tokens,
)
span.set_attribute(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_PREFILL, prefill_time
)
span.set_attribute(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_DECODE, decode_time
)
span.set_attribute(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_INFERENCE, inference_time
)
# meta
span.set_attribute(
SpanAttributes.GEN_AI_REQUEST_ID, req_state.external_req_id
)
if req_state.top_p:
span.set_attribute(SpanAttributes.GEN_AI_REQUEST_TOP_P, req_state.top_p)
if req_state.max_tokens_param:
span.set_attribute(
SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS, req_state.max_tokens_param
)
if req_state.temperature:
span.set_attribute(
SpanAttributes.GEN_AI_REQUEST_TEMPERATURE, req_state.temperature
)
if req_state.n:
span.set_attribute(SpanAttributes.GEN_AI_REQUEST_N, req_state.n)
def _update_stats_from_output(
self,
req_state: RequestState,
engine_core_output: EngineCoreOutput,
engine_core_timestamp: float | None,
iteration_stats: IterationStats | None,
):
if iteration_stats is None:
return
assert engine_core_timestamp is not None
assert req_state.stats is not None
iteration_stats.update_from_output(
engine_core_output,
engine_core_timestamp,
req_state.is_prefilling,
req_state.prompt_len,
req_state.stats,
self.lora_states,
req_state.lora_name,
)
def _update_stats_from_finished(
self,
req_state: RequestState,
finish_reason: FinishReason | None,
iteration_stats: IterationStats | None,
):
if iteration_stats is None:
return
assert finish_reason is not None
assert req_state.stats is not None
iteration_stats.update_from_finished_request(
finish_reason=finish_reason,
num_prompt_tokens=length_from_prompt_token_ids_or_embeds(
req_state.prompt_token_ids, req_state.prompt_embeds
),
max_tokens_param=req_state.max_tokens_param,
req_stats=req_state.stats,
num_cached_tokens=req_state.num_cached_tokens,
)
self.lora_states.request_finished(req_state.request_id, req_state.lora_name)
ParentRequest.observe_finished_request(
req_state.parent_req, iteration_stats, req_state.stats.num_generation_tokens
)