youkaichao f89d18ff74
[6/N] pass whole config to inner model (#10205)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 06:41:46 +00:00

248 lines
9.9 KiB
Python

"""PyTorch MAMBA model."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import MambaConfig
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import (HasInnerState,
IsAttentionFree)
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.worker.model_runner import (_BATCH_SIZES_TO_CAPTURE,
_get_graph_batch_size)
from .utils import maybe_prefix
KVCache = Tuple[torch.Tensor, torch.Tensor]
class MambaDecoderLayer(nn.Module):
def __init__(self,
config: MambaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.is_falcon_mamba = config.model_type == "falcon_mamba"
mixer_rms_eps = config.mixer_rms_eps if self.is_falcon_mamba else None
self.mixer = MambaMixer(hidden_size=config.hidden_size,
ssm_state_size=config.state_size,
conv_kernel_size=config.conv_kernel,
intermediate_size=config.intermediate_size,
time_step_rank=config.time_step_rank,
use_conv_bias=config.use_conv_bias,
use_bias=config.use_bias,
use_rms_norm=self.is_falcon_mamba,
rms_norm_eps=mixer_rms_eps,
activation=config.hidden_act)
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states, attn_metadata,
mamba_cache_params)
return hidden_states, residual
class MambaModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embeddings = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
decoder_layers = []
for i in range(config.num_hidden_layers):
decoder_layers.append(
MambaDecoderLayer(config,
cache_config=cache_config,
quant_config=quant_config))
self.layers = nn.ModuleList(decoder_layers)
self.norm_f = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams,
) -> torch.Tensor:
hidden_states = self.embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
attn_metadata=attn_metadata,
residual=residual,
mamba_cache_params=mamba_cache_params.at_layer_idx(i))
hidden_states, _ = self.norm_f(hidden_states, residual)
return hidden_states
class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"Mamba does not support prefix caching"
super().__init__()
self.config = config
self.scheduler_config = scheduler_config
self.backbone = MambaModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "backbone"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
if config.tie_word_embeddings:
self.lm_head = self.backbone.embeddings
else:
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.sampler = get_sampler()
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs):
if self.mamba_cache is None:
max_batch_size = (_get_graph_batch_size(
self.scheduler_config.max_num_seqs) if self.scheduler_config
else max(_BATCH_SIZES_TO_CAPTURE) + 2)
self.mamba_cache = MambaCacheManager(
self.lm_head.weight.dtype, self.config.num_hidden_layers,
max_batch_size, *self._get_mamba_cache_shape())
(
mamba_cache_tensors,
state_indices_tensor,
) = self.mamba_cache.current_run_tensors(input_ids, attn_metadata,
**kwargs)
mamba_cache_params = MambaCacheParams(mamba_cache_tensors[0],
mamba_cache_tensors[1],
state_indices_tensor)
hidden_states = self.backbone(input_ids, positions, attn_metadata,
mamba_cache_params)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def _get_mamba_cache_shape(
self) -> Tuple[Tuple[int, int], Tuple[int, int]]:
world_size = get_tensor_model_parallel_world_size()
conv_state_shape = (
self.config.intermediate_size // world_size,
self.config.conv_kernel - 1,
)
temporal_state_shape = (
self.config.intermediate_size // world_size,
self.config.state_size,
)
return conv_state_shape, temporal_state_shape
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "A_log" in name:
name = name.replace("A_log", "A")
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)