vllm/vllm/v1/kv_cache_interface.py
Chen Zhang f8a1a2d108
[v1] Hybrid Memory Allocator (#17996)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-06-05 20:47:09 -07:00

195 lines
6.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from dataclasses import dataclass
from typing import Optional
import torch
from typing_extensions import Self
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.utils import cdiv, get_dtype_size
logger = init_logger(__name__)
@dataclass
class KVCacheSpec:
"""
A base class for specifying the KV cache format of one layer.
"""
# number of tokens in a block
block_size: int
@property
def type_id(self) -> str:
"""
The type identifier of this KV cache.
Return different strings for layers with different KV cache type (e.g.,
different number of tokens like full attention vs sliding window
attention, different KV cache size per token like layers with different
number of heads)
Returns:
The type identifier of this KV cache.
"""
raise NotImplementedError
@property
def page_size_bytes(self) -> int:
"""
The size of a page with `block_size` tokens in bytes.
Returns:
The page size
"""
raise NotImplementedError
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
"""
The maximum possible memory usage of this KV cache in bytes.
Returns:
The KV cache size in bytes
"""
raise NotImplementedError
@classmethod
def merge(cls, specs: list[Self]) -> Self:
"""
Merge a list of KVCacheSpec objects into a single KVCacheSpec object.
"""
assert all(spec.type_id == specs[0].type_id for spec in specs[1:]), (
"All layers in the same KV cache group must share the same "
"type_id.")
return copy.deepcopy(specs[0])
@dataclass
class AttentionSpec(KVCacheSpec):
num_kv_heads: int
head_size: int
dtype: torch.dtype
use_mla: bool
@property
def page_size_bytes(self) -> int:
# For MLA we only store a single latent vector
coef = 1 if self.use_mla else 2
return coef * self.block_size * self.num_kv_heads * self.head_size \
* get_dtype_size(self.dtype)
@dataclass
class FullAttentionSpec(AttentionSpec):
sliding_window: Optional[int] = None
"""
When hybrid allocator is disabled and the model contains both full
attention layers and sliding window attention layers, sliding
window attention are regarded as full attention in KV cache manager
(blocks are allocated for all tokens), while computed as sliding window
attention in model runner.
In this case, we use FullAttentionSpec and record the sliding window size.
Default to None for not using sliding window attention.
"""
@property
def type_id(self) -> str:
return f"full_attention_{self.block_size}_{self.page_size_bytes}"
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
max_model_len = vllm_config.model_config.max_model_len
return cdiv(max_model_len, self.block_size) * self.page_size_bytes
@classmethod
def merge(cls, specs: list[Self]) -> Self:
"""
Merge a list of FullAttentionSpec objects into a single
FullAttentionSpec object.
"""
merged_spec = super().merge(specs)
sliding_window = set(spec.sliding_window for spec in specs
if spec.sliding_window is not None)
if len(sliding_window) == 0:
merged_spec.sliding_window = None
elif len(sliding_window) == 1:
merged_spec.sliding_window = sliding_window.pop()
else:
raise ValueError(
"All sliding window layers in the same KV cache group "
"must have the same window size.")
return merged_spec
@dataclass
class SlidingWindowSpec(AttentionSpec):
sliding_window: int
def __post_init__(self):
assert not self.use_mla, "MLA is not supported for sliding window"
@property
def type_id(self) -> str:
return f"sliding_window_{self.sliding_window}_{self.block_size}_{self.page_size_bytes}" # noqa
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
max_model_len = vllm_config.model_config.max_model_len
max_num_batched_tokens = (
vllm_config.scheduler_config.max_num_batched_tokens)
# During chunked prefill, we allocate KV cache for the last
# `self.sliding_window-1` computed tokens plus the newly scheduled
# tokens. And we won't allocate KV cache for more than `max_model_len`
# tokens.
num_tokens = min(self.sliding_window - 1 + max_num_batched_tokens,
max_model_len)
# +1 here because the sliding window may not start from the beginning
# of the block. For example, if the block size is 4 and num_token
# is 4, we need two blocks [XXCD] [EF] to store the sliding
# window [CDEF] of 6 tokens.
return (cdiv(num_tokens, self.block_size) + 1) * self.page_size_bytes
@dataclass
class KVCacheTensor:
"""
A class for specifying how the workers should initialize the KV cache.
"""
size: int # size of the KV cache tensor in bytes
shared_by: list[str] # layer names that share the same KV cache tensor
@dataclass
class KVCacheGroupSpec:
"""
Represents a group of model layers that share the same KV cache block table.
These layers are regarded as one layer in the KV cache manager.
"""
# The names of model layers in this group
layer_names: list[str]
# The KV cache spec of this manager layer
kv_cache_spec: KVCacheSpec
@dataclass
class KVCacheConfig:
"""
The KV cache configuration of a model.
"""
"""The number of KV cache blocks"""
num_blocks: int
"""How should model runner initialize the KV cache tensors for each layer"""
kv_cache_tensors: list[KVCacheTensor]
"""
The kv cache groups of the model.
For models with only one type of attention, there is only one group that
contains all layers.
For models with multiple types of attention, there will be multiple groups,
see `_get_kv_cache_config_uniform_page_size` for more details.
"""
kv_cache_groups: list[KVCacheGroupSpec]