mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 05:15:42 +08:00
149 lines
5.1 KiB
Python
149 lines
5.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# ruff: noqa
|
|
# type: ignore
|
|
import threading
|
|
from collections.abc import Iterable
|
|
from concurrent import futures
|
|
from typing import Callable, Generator, Literal
|
|
|
|
import grpc
|
|
import pytest
|
|
from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import (
|
|
ExportTraceServiceResponse,
|
|
)
|
|
from opentelemetry.proto.collector.trace.v1.trace_service_pb2_grpc import (
|
|
TraceServiceServicer,
|
|
add_TraceServiceServicer_to_server,
|
|
)
|
|
from opentelemetry.proto.common.v1.common_pb2 import AnyValue, KeyValue
|
|
from opentelemetry.sdk.environment_variables import OTEL_EXPORTER_OTLP_TRACES_INSECURE
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.tracing import SpanAttributes
|
|
|
|
FAKE_TRACE_SERVER_ADDRESS = "localhost:4317"
|
|
|
|
FieldName = Literal[
|
|
"bool_value", "string_value", "int_value", "double_value", "array_value"
|
|
]
|
|
|
|
|
|
def decode_value(value: AnyValue):
|
|
field_decoders: dict[FieldName, Callable] = {
|
|
"bool_value": (lambda v: v.bool_value),
|
|
"string_value": (lambda v: v.string_value),
|
|
"int_value": (lambda v: v.int_value),
|
|
"double_value": (lambda v: v.double_value),
|
|
"array_value": (
|
|
lambda v: [decode_value(item) for item in v.array_value.values]
|
|
),
|
|
}
|
|
for field, decoder in field_decoders.items():
|
|
if value.HasField(field):
|
|
return decoder(value)
|
|
raise ValueError(f"Couldn't decode value: {value}")
|
|
|
|
|
|
def decode_attributes(attributes: Iterable[KeyValue]):
|
|
return {kv.key: decode_value(kv.value) for kv in attributes}
|
|
|
|
|
|
class FakeTraceService(TraceServiceServicer):
|
|
def __init__(self):
|
|
self.request = None
|
|
self.evt = threading.Event()
|
|
|
|
def Export(self, request, context):
|
|
self.request = request
|
|
self.evt.set()
|
|
return ExportTraceServiceResponse()
|
|
|
|
|
|
@pytest.fixture
|
|
def trace_service() -> Generator[FakeTraceService, None, None]:
|
|
"""Fixture to set up a fake gRPC trace service"""
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
|
|
service = FakeTraceService()
|
|
add_TraceServiceServicer_to_server(service, server)
|
|
server.add_insecure_port(FAKE_TRACE_SERVER_ADDRESS)
|
|
server.start()
|
|
|
|
yield service
|
|
|
|
server.stop(None)
|
|
|
|
|
|
def test_traces(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
trace_service: FakeTraceService,
|
|
):
|
|
with monkeypatch.context() as m:
|
|
m.setenv(OTEL_EXPORTER_OTLP_TRACES_INSECURE, "true")
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=0.01,
|
|
top_p=0.1,
|
|
max_tokens=256,
|
|
)
|
|
model = "facebook/opt-125m"
|
|
llm = LLM(
|
|
model=model,
|
|
otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS,
|
|
gpu_memory_utilization=0.3,
|
|
disable_log_stats=False,
|
|
)
|
|
prompts = ["This is a short prompt"]
|
|
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
|
print(f"test_traces outputs is : {outputs}")
|
|
|
|
timeout = 10
|
|
if not trace_service.evt.wait(timeout):
|
|
raise TimeoutError(
|
|
f"The fake trace service didn't receive a trace within "
|
|
f"the {timeout} seconds timeout"
|
|
)
|
|
|
|
request = trace_service.request
|
|
assert len(request.resource_spans) == 1, (
|
|
f"Expected 1 resource span, but got {len(request.resource_spans)}"
|
|
)
|
|
assert len(request.resource_spans[0].scope_spans) == 1, (
|
|
f"Expected 1 scope span, "
|
|
f"but got {len(request.resource_spans[0].scope_spans)}"
|
|
)
|
|
assert len(request.resource_spans[0].scope_spans[0].spans) == 1, (
|
|
f"Expected 1 span, "
|
|
f"but got {len(request.resource_spans[0].scope_spans[0].spans)}"
|
|
)
|
|
|
|
attributes = decode_attributes(
|
|
request.resource_spans[0].scope_spans[0].spans[0].attributes
|
|
)
|
|
# assert attributes.get(SpanAttributes.GEN_AI_RESPONSE_MODEL) == model
|
|
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_ID) == outputs[0].request_id
|
|
assert (
|
|
attributes.get(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE)
|
|
== sampling_params.temperature
|
|
)
|
|
assert (
|
|
attributes.get(SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p
|
|
)
|
|
assert (
|
|
attributes.get(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS)
|
|
== sampling_params.max_tokens
|
|
)
|
|
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
|
|
assert attributes.get(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
|
|
outputs[0].prompt_token_ids
|
|
)
|
|
completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs)
|
|
assert (
|
|
attributes.get(SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS)
|
|
== completion_tokens
|
|
)
|
|
|
|
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE) > 0
|
|
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) > 0
|
|
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_E2E) > 0
|