vllm/tests/models/language/pooling/test_qwen3_reranker.py

88 lines
2.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
model_name = "Qwen/Qwen3-Reranker-4B"
text_1 = "What is the capital of France?"
texts_2 = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
]
def vllm_reranker(model_name):
from vllm import LLM
model = LLM(model=model_name,
task="score",
hf_overrides={
"architectures": ["Qwen3ForSequenceClassification"],
"classifier_from_token": ["no", "yes"],
"is_original_qwen3_reranker": True,
},
dtype="float32")
text_1 = "What is the capital of France?"
texts_2 = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
]
outputs = model.score(text_1, texts_2)
return [output.outputs.score for output in outputs]
def hf_reranker(model_name):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(model_name).eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
def process_inputs(pairs):
inputs = tokenizer(pairs,
padding=False,
truncation='longest_first',
return_attention_mask=False,
max_length=max_length)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = ele
inputs = tokenizer.pad(inputs,
padding=True,
return_tensors="pt",
max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
pairs = [(text_1, texts_2[0]), (text_1, texts_2[1])]
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
return scores
@pytest.mark.parametrize("model_name", [model_name])
def test_model(model_name):
hf_outputs = hf_reranker(model_name)
vllm_outputs = vllm_reranker(model_name)
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)