vllm/vllm/lora/lora.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

199 lines
6.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional
from typing import Sequence as GenericSequence
import torch
import torch.types
from vllm.lora.peft_helper import PEFTHelper
from vllm.utils import is_pin_memory_available
class LoRALayerWeights:
"""LoRA weights for a layer composed of two low rank matrixes."""
def __init__(
self,
module_name: str,
rank: int,
lora_alpha: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
bias: Optional[torch.Tensor] = None,
embeddings_tensor: Optional[torch.Tensor] = None,
scaling: Optional[float] = None,
) -> None:
self.module_name = module_name
self.rank = rank
self.lora_alpha = lora_alpha
self.lora_a = lora_a
self.lora_b = lora_b
self.bias = bias
self.embeddings_tensor = embeddings_tensor
if scaling is None:
self.scaling = self.lora_alpha / self.rank
else:
self.scaling = scaling
def optimize(self) -> "LoRALayerWeights":
"""Optimize the LoRA by merging the scaling into lora_b."""
if self.scaling == 1:
return self
self.lora_b *= self.scaling
self.scaling = 1
return self
@property
def input_dim(self) -> int:
return self.lora_a.shape[0]
@property
def output_dim(self) -> int:
return self.lora_b.shape[1]
@property
def is_packed(self) -> bool:
return False
@property
def extra_vocab_size(self) -> int:
return self.embeddings_tensor.shape[
0] if self.embeddings_tensor is not None else 0
@classmethod
def from_config(
cls,
module_name: str,
peft_helper: PEFTHelper,
embeddings_tensor: Optional[torch.Tensor] = None,
) -> "LoRALayerWeights":
return cls(module_name, peft_helper.r, peft_helper.lora_alpha, None,
None, None, embeddings_tensor,
peft_helper.vllm_lora_scaling_factor)
@classmethod
def create_dummy_lora_weights(
cls,
module_name: str,
input_dim: int,
output_dim: int,
rank: int,
dtype: torch.dtype,
device: torch.types.Device,
embeddings_tensor_dim: Optional[int] = None,
bias_enabled: Optional[bool] = False) -> "LoRALayerWeights":
pin_memory = str(device) == "cpu" and is_pin_memory_available()
lora_a = torch.zeros([input_dim, rank],
dtype=dtype,
device=device,
pin_memory=pin_memory)
lora_b = torch.zeros([rank, output_dim],
dtype=dtype,
device=device,
pin_memory=pin_memory)
if bias_enabled:
bias = torch.zeros([output_dim],
dtype=dtype,
device=device,
pin_memory=pin_memory)
else:
bias = None
embeddings_tensor = torch.rand(
10,
embeddings_tensor_dim,
dtype=dtype,
device=device,
pin_memory=pin_memory) if embeddings_tensor_dim else None
return cls(
module_name,
rank=rank,
lora_alpha=1,
lora_a=lora_a,
lora_b=lora_b,
bias=bias,
embeddings_tensor=embeddings_tensor,
)
class PackedLoRALayerWeights(LoRALayerWeights):
"""LoRA used for packed layers (eg. qkv_proj)."""
def __init__(
self,
module_name: str,
rank: int,
lora_alphas: List[Optional[int]],
lora_a: List[Optional[torch.Tensor]],
lora_b: List[Optional[torch.Tensor]],
bias: Optional[List[Optional[torch.Tensor]]] = None,
scaling: Optional[List[float]] = None,
) -> None:
super().__init__(
module_name=module_name,
rank=rank,
lora_alpha=0,
lora_a=lora_a,
lora_b=lora_b,
bias=bias,
scaling=scaling, # type: ignore
embeddings_tensor=None,
)
self.lora_alphas = lora_alphas
if scaling is None:
self.scaling = [ # type: ignore
lora_alpha / self.rank # type: ignore # noqa
for lora_alpha in self.lora_alphas
]
@classmethod
def pack(
cls, loras: GenericSequence[Optional["LoRALayerWeights"]]
) -> "PackedLoRALayerWeights":
"""Pack a list of LoRAs into a single LoRA.
If LoRA is None, it signifies that the submodule does not have a LoRA.
"""
first_lora = next(lora for lora in loras if lora is not None)
for lora in loras:
if lora is None:
continue
lora.optimize()
rank = first_lora.rank
module_name = first_lora.module_name
obj = cls(
module_name,
rank,
[lora.lora_alpha if lora is not None else None for lora in loras],
[lora.lora_a if lora is not None else None for lora in loras],
[lora.lora_b if lora is not None else None for lora in loras],
[lora.bias if lora is not None else None for lora in loras],
scaling=[
1 if lora is not None else None # type: ignore
for lora in loras
])
return obj
def optimize(self) -> "PackedLoRALayerWeights":
"""Optimize the LoRA by merging the scaling into lora_b."""
for i in range(len(self.lora_b)):
if self.scaling[i] == 1 or self.lora_b[i] is None: # type: ignore
continue
self.lora_b[i] *= self.scaling[i] # type: ignore
self.scaling[i] = 1 # type: ignore
return self
@property
def input_dim(self) -> int:
raise NotImplementedError()
@property
def output_dim(self) -> int:
raise NotImplementedError()
@property
def is_packed(self) -> bool:
return True