mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 00:16:00 +08:00
243 lines
8.2 KiB
Python
243 lines
8.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
Utilities for Punica kernel construction.
|
|
"""
|
|
from vllm.triton_utils import tl, triton
|
|
|
|
|
|
@triton.jit
|
|
def mm_k(a_ptr, b_ptr, ak_stride, bk_stride, offset_k, K: tl.constexpr,
|
|
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
|
EVEN_K: tl.constexpr, SPLIT_K: tl.constexpr, CAST_TYPE: tl.constexpr,
|
|
b_dtype: tl.constexpr):
|
|
"""
|
|
Given a_ptr and b_ptr, that identify the rows of A (m x k) and columns of
|
|
B (k x n), iterate, through the K dimension to compute the partial/complete
|
|
matrix block product.
|
|
If SPLIT_K == 1, the output m x n product is complete.
|
|
If SPLIT_K > 1, the thread block computes partial outputs. The partial
|
|
outputs are then atomically summed in the caller code.
|
|
Args:
|
|
a_ptr: Array of pointers, identifying rows of A
|
|
b_ptr: Array of pointers, identifying columns of B
|
|
ak_stride: K dimension stride of the A matrix
|
|
bk_stride: K dimension stride of the B matrix
|
|
K: Length of the K dimension
|
|
BLOCK_M: M dimension of the output block m x n
|
|
BLOCK_N: N dimension of the output block m x n
|
|
BLOCK_K: K dimension atom
|
|
EVEN_K: True if the blocks of A and B can be loaded without any
|
|
masking.
|
|
SPLIT_K: Parameter signifying parallelism in the K dimension.
|
|
CAST_TYPE: if True, cast the values from the A matrix to the B
|
|
matrix dtype.
|
|
b_dtype: datatype of the B matrix
|
|
"""
|
|
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
|
for k in range(tl.cdiv(K, BLOCK_K * SPLIT_K)):
|
|
if EVEN_K:
|
|
tiled_a = tl.load(a_ptr)
|
|
tiled_b = tl.load(b_ptr)
|
|
else:
|
|
tiled_a = tl.load(a_ptr,
|
|
mask=offset_k[None, :]
|
|
< K - k * (BLOCK_K * SPLIT_K),
|
|
other=0)
|
|
tiled_b = tl.load(b_ptr,
|
|
mask=offset_k[:, None]
|
|
< K - k * (BLOCK_K * SPLIT_K),
|
|
other=0)
|
|
if CAST_TYPE:
|
|
tiled_a = tiled_a.to(b_dtype)
|
|
accumulator += tl.dot(
|
|
tiled_a,
|
|
tiled_b,
|
|
)
|
|
a_ptr += BLOCK_K * SPLIT_K * ak_stride
|
|
b_ptr += BLOCK_K * SPLIT_K * bk_stride
|
|
return accumulator
|
|
|
|
|
|
@triton.jit
|
|
def do_expand_kernel(
|
|
pid_n,
|
|
lora_index,
|
|
slice_id,
|
|
input_ptr,
|
|
lora_ptr,
|
|
out_ptr,
|
|
N,
|
|
K,
|
|
M_LEN,
|
|
ram, # array identifying the rows of Input ptr to operate on
|
|
slice_start_loc,
|
|
# input ptr strides
|
|
input_d0_stride,
|
|
input_d1_stride,
|
|
input_d2_stride,
|
|
# lora ptr strides
|
|
ls_d0_ptr,
|
|
ls_d1_ptr,
|
|
ls_d2_ptr,
|
|
# out ptr strides
|
|
output_d0_stride,
|
|
output_d1_stride,
|
|
# constants
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
BLOCK_K: tl.constexpr,
|
|
SAME_STRIDE: tl.constexpr,
|
|
SLICE_NUM: tl.constexpr,
|
|
EVEN_K: tl.constexpr,
|
|
CAST_TYPE: tl.constexpr,
|
|
ADD_INPUTS: tl.constexpr,
|
|
):
|
|
"""
|
|
Given an array of integers that identifies the rows of A, ram,
|
|
a lora index that identifies which LoRA to use from lora_ptr, lora_index,
|
|
a slice_id that identifies the input/output slice,
|
|
compute the matrix product and store in the appropriate output location.
|
|
Given that this is an expand kernel, we don't perform any split-K reduction
|
|
as the K dimension is assumed to be small.
|
|
"""
|
|
|
|
# ls_d*_ptr can be either an integer or a pointer
|
|
if SAME_STRIDE:
|
|
# integer
|
|
cur_lora_d0_stride = ls_d0_ptr
|
|
cur_lora_d1_stride = ls_d1_ptr
|
|
cur_lora_d2_stride = ls_d2_ptr
|
|
else:
|
|
# pointer
|
|
cur_lora_d0_stride = tl.load(ls_d0_ptr + slice_id)
|
|
cur_lora_d1_stride = tl.load(ls_d1_ptr + slice_id)
|
|
cur_lora_d2_stride = tl.load(ls_d2_ptr + slice_id)
|
|
|
|
# Identify the input_ptr and lora_ptr from slice_id.
|
|
if SLICE_NUM == 1:
|
|
cur_input_ptr = input_ptr
|
|
cur_lora_ptr = lora_ptr
|
|
else:
|
|
cur_input_ptr = input_ptr + slice_id * input_d0_stride
|
|
cur_lora_ptr = tl.load(lora_ptr + slice_id).to(
|
|
tl.pointer_type(out_ptr.dtype.element_ty))
|
|
|
|
# Identify the column indices of B to process.
|
|
offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
|
|
rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N)
|
|
|
|
# Identify A and B block pointers
|
|
offset_k = tl.arange(0, BLOCK_K)
|
|
a_ptr = (cur_input_ptr + ram[:, None] * input_d1_stride +
|
|
offset_k[None, :] * input_d2_stride)
|
|
b_ptr = (cur_lora_ptr + cur_lora_d0_stride * lora_index +
|
|
offset_k[:, None] * cur_lora_d2_stride +
|
|
rbn[None, :] * cur_lora_d1_stride)
|
|
|
|
# Compute the block matrix product.
|
|
SPLIT_K = 1
|
|
accumulator = mm_k(a_ptr, b_ptr, input_d2_stride, cur_lora_d2_stride,
|
|
offset_k, K, BLOCK_M, BLOCK_N, BLOCK_K, EVEN_K, SPLIT_K,
|
|
CAST_TYPE, cur_lora_ptr.dtype.element_ty)
|
|
|
|
tiled_c = accumulator.to(cur_lora_ptr.dtype.element_ty)
|
|
if SLICE_NUM == 1:
|
|
cur_slice_start = slice_start_loc
|
|
else:
|
|
cur_slice_start = tl.load(slice_start_loc + slice_id)
|
|
|
|
# Identify the C output pointers to store the results of the accumulator.
|
|
offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N + cur_slice_start
|
|
offset_cm = tl.arange(0, BLOCK_M)
|
|
c_ptr = (out_ptr + ram[:, None] * output_d0_stride +
|
|
offset_cn[None, :] * output_d1_stride)
|
|
c_mask = (offset_cm[:, None] < M_LEN) & (offset_cn[None, :]
|
|
< (cur_slice_start + N))
|
|
|
|
if ADD_INPUTS:
|
|
tiled_out = tl.load(c_ptr, mask=c_mask)
|
|
tiled_c += tiled_out
|
|
tl.store(c_ptr, tiled_c, mask=c_mask)
|
|
|
|
|
|
@triton.jit
|
|
def do_shrink_kernel(
|
|
pid_n,
|
|
pid_sk,
|
|
slice_id,
|
|
lora_index,
|
|
input_ptr,
|
|
lora_ptr,
|
|
out_ptr,
|
|
N,
|
|
K,
|
|
M_LEN,
|
|
ram,
|
|
# input strides
|
|
input_d0_stride,
|
|
input_d1_stride,
|
|
# lora strides
|
|
lora_d0_stride,
|
|
lora_d1_stride,
|
|
lora_d2_stride,
|
|
# output strides
|
|
output_d0_stride,
|
|
output_d1_stride,
|
|
output_d2_stride,
|
|
scaling,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
BLOCK_K: tl.constexpr,
|
|
EVEN_K: tl.constexpr,
|
|
SPLIT_K: tl.constexpr,
|
|
SLICE_NUM: tl.constexpr,
|
|
):
|
|
"""
|
|
Given an array of integers that identifies the rows of A, ram,
|
|
a lora index that identifies which LoRA to use from lora_ptr, lora_index,
|
|
a slice_id that identifies the input/output slice, compute the
|
|
matrix product and store in the appropriate output location.
|
|
"""
|
|
|
|
# Identify the lora_ptr from slice_id.
|
|
if SLICE_NUM == 1:
|
|
# current lora ptr
|
|
cur_lora_ptr = lora_ptr
|
|
else:
|
|
# current lora ptr
|
|
cur_lora_ptr = tl.load(lora_ptr + slice_id).to(
|
|
tl.pointer_type(input_ptr.dtype.element_ty))
|
|
|
|
# Identify the column indices of B to process.
|
|
offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
|
|
rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N)
|
|
|
|
# Identify A and B block pointers
|
|
offset_k = pid_sk * BLOCK_K + tl.arange(0, BLOCK_K)
|
|
a_ptr = (input_ptr + ram[:, None] * input_d0_stride +
|
|
offset_k[None, :] * input_d1_stride)
|
|
b_ptr = (cur_lora_ptr + lora_d0_stride * lora_index +
|
|
rbn[None, :] * lora_d1_stride +
|
|
offset_k[:, None] * lora_d2_stride)
|
|
|
|
# Compute partial/complete block matrix product.
|
|
accumulator = mm_k(a_ptr, b_ptr, input_d1_stride, lora_d2_stride, offset_k,
|
|
K, BLOCK_M, BLOCK_N, BLOCK_K, EVEN_K, SPLIT_K, False,
|
|
cur_lora_ptr.dtype.element_ty)
|
|
|
|
# Identify the C output pointers to store the results of the accumulator.
|
|
offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
|
|
offset_cm = tl.arange(0, BLOCK_M)
|
|
cur_out_ptr = (out_ptr if SLICE_NUM == 1 else out_ptr +
|
|
slice_id * output_d0_stride)
|
|
c_ptr = cur_out_ptr + ram[:, None] * output_d1_stride + offset_cn[
|
|
None, :] * output_d2_stride
|
|
c_mask = (offset_cm[:, None] < M_LEN) & (offset_cn[None, :] < N)
|
|
|
|
accumulator *= scaling
|
|
# handles write-back with reduction-splitting
|
|
if SPLIT_K == 1:
|
|
tl.store(c_ptr, accumulator, mask=c_mask)
|
|
else:
|
|
tl.atomic_add(c_ptr, accumulator, mask=c_mask)
|