Mengqing Cao f9bc5a0693
[Bugfix] Fix triton import with local TritonPlaceholder (#17446)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-05-06 17:53:09 +08:00

414 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Copyright (c) 2024, Tri Dao, Albert Gu.
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/selective_state_update.py
import torch
from packaging import version
from vllm import _custom_ops as ops
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.triton_utils import HAS_TRITON, tl, triton
TRITON3 = HAS_TRITON and (version.parse(triton.__version__)
>= version.parse("3.0.0"))
if TRITON3:
@triton.jit
def softplus(dt):
dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt)
return dt
else:
@triton.jit
def softplus(dt):
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
return dt
@triton.heuristics(
{"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
@triton.heuristics({
"HAS_STATE_BATCH_INDICES":
lambda args: args["state_batch_indices_ptr"] is not None
})
@triton.heuristics(
{"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])})
@triton.jit
def _selective_scan_update_kernel(
# Pointers to matrices
state_ptr,
x_ptr,
dt_ptr,
dt_bias_ptr,
A_ptr,
B_ptr,
C_ptr,
D_ptr,
z_ptr,
out_ptr,
state_batch_indices_ptr,
pad_slot_id,
# Matrix dimensions
batch,
nheads,
dim,
dstate,
nheads_ngroups_ratio,
# Strides
stride_state_batch,
stride_state_head,
stride_state_dim,
stride_state_dstate,
stride_x_batch,
stride_x_head,
stride_x_dim,
stride_dt_batch,
stride_dt_head,
stride_dt_dim,
stride_dt_bias_head,
stride_dt_bias_dim,
stride_A_head,
stride_A_dim,
stride_A_dstate,
stride_B_batch,
stride_B_group,
stride_B_dstate,
stride_C_batch,
stride_C_group,
stride_C_dstate,
stride_D_head,
stride_D_dim,
stride_z_batch,
stride_z_head,
stride_z_dim,
stride_out_batch,
stride_out_head,
stride_out_dim,
# Meta-parameters
DT_SOFTPLUS: tl.constexpr,
TIE_HDIM: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
HAS_DT_BIAS: tl.constexpr,
HAS_D: tl.constexpr,
HAS_Z: tl.constexpr,
HAS_STATE_BATCH_INDICES: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
):
pid_m = tl.program_id(axis=0)
pid_b = tl.program_id(axis=1)
pid_h = tl.program_id(axis=2)
# If HAS_STATE_BATCH_INDICES is true, then the ssm state's batch coordinate
# is taken from the state_batch_indices_ptr Otherwise, the state coordinate
# is the same as the batch id.
if HAS_STATE_BATCH_INDICES:
state_batch_indices_ptr += pid_b
state_batch_idx = tl.load(state_batch_indices_ptr)
state_ptr += (state_batch_idx * stride_state_batch +
pid_h * stride_state_head)
else:
state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
if HAS_DT_BIAS:
dt_bias_ptr += pid_h * stride_dt_bias_head
A_ptr += pid_h * stride_A_head
B_ptr += pid_b * stride_B_batch + (pid_h //
nheads_ngroups_ratio) * stride_B_group
C_ptr += pid_b * stride_C_batch + (pid_h //
nheads_ngroups_ratio) * stride_C_group
if HAS_Z:
z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim +
offs_n[None, :] * stride_state_dstate)
x_ptrs = x_ptr + offs_m * stride_x_dim
dt_ptrs = dt_ptr + offs_m * stride_dt_dim
if HAS_DT_BIAS:
dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
if HAS_D:
D_ptr += pid_h * stride_D_head
A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim +
offs_n[None, :] * stride_A_dstate)
B_ptrs = B_ptr + offs_n * stride_B_dstate
C_ptrs = C_ptr + offs_n * stride_C_dstate
if HAS_D:
D_ptrs = D_ptr + offs_m * stride_D_dim
if HAS_Z:
z_ptrs = z_ptr + offs_m * stride_z_dim
out_ptrs = out_ptr + offs_m * stride_out_dim
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
if HAS_STATE_BATCH_INDICES:
mask &= (state_batch_idx != pad_slot_id)
state = tl.load(state_ptrs, mask=mask, other=0.0)
x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if not TIE_HDIM:
dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if HAS_DT_BIAS:
dt += tl.load(dt_bias_ptrs, mask=offs_m < dim,
other=0.0).to(tl.float32)
if DT_SOFTPLUS:
dt = softplus(dt)
A = tl.load(A_ptrs,
mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate),
other=0.0).to(tl.float32)
dA = tl.exp(A * dt[:, None])
else:
dt = tl.load(dt_ptr).to(tl.float32)
if HAS_DT_BIAS:
dt += tl.load(dt_bias_ptr).to(tl.float32)
if DT_SOFTPLUS:
dt = softplus(dt)
A = tl.load(A_ptr).to(tl.float32)
dA = tl.exp(A * dt) # scalar, not a matrix
B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
if HAS_D:
D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if HAS_Z:
z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt
state = state * dA + dB * x[:, None]
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
if HAS_STATE_BATCH_INDICES:
mask &= (state_batch_idx != pad_slot_id)
tl.store(state_ptrs, state, mask=mask)
out = tl.sum(state * C[None, :], axis=1)
if HAS_D:
out += x * D
if HAS_Z:
out *= z * tl.sigmoid(z)
tl.store(out_ptrs, out, mask=offs_m < dim)
def selective_state_update(state,
x,
dt,
A,
B,
C,
D=None,
z=None,
dt_bias=None,
dt_softplus=False,
state_batch_indices=None,
pad_slot_id=PAD_SLOT_ID):
"""
Argument:
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
x: (batch, dim) or (batch, nheads, dim)
dt: (batch, dim) or (batch, nheads, dim)
A: (dim, dstate) or (nheads, dim, dstate)
B: (batch, dstate) or (batch, ngroups, dstate)
C: (batch, dstate) or (batch, ngroups, dstate)
D: (dim,) or (nheads, dim)
z: (batch, dim) or (batch, nheads, dim)
dt_bias: (dim,) or (nheads, dim)
pad_slot_id: int
if cache_indices is passed, lets the kernel identify padded
entries that will not be processed,
for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id]
in this case, the kernel will not process entries at
indices 0 and 3
Return:
out: (batch, dim) or (batch, nheads, dim)
"""
has_heads = state.dim() > 3
if state.dim() == 3:
state = state.unsqueeze(1)
if x.dim() == 2:
x = x.unsqueeze(1)
if dt.dim() == 2:
dt = dt.unsqueeze(1)
if A.dim() == 2:
A = A.unsqueeze(0)
if B.dim() == 2:
B = B.unsqueeze(1)
if C.dim() == 2:
C = C.unsqueeze(1)
if D is not None and D.dim() == 1:
D = D.unsqueeze(0)
if z is not None and z.dim() == 2:
z = z.unsqueeze(1)
if dt_bias is not None and dt_bias.dim() == 1:
dt_bias = dt_bias.unsqueeze(0)
_, nheads, dim, dstate = state.shape
batch = x.shape[0]
assert x.shape == (batch, nheads, dim)
assert dt.shape == x.shape
assert A.shape == (nheads, dim, dstate)
ngroups = B.shape[1]
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
assert B.shape == (batch, ngroups, dstate)
assert C.shape == B.shape
if D is not None:
assert D.shape == (nheads, dim)
if z is not None:
assert z.shape == x.shape
if dt_bias is not None:
assert dt_bias.shape == (nheads, dim)
if state_batch_indices is not None:
assert state_batch_indices.shape == (batch, )
out = torch.empty_like(x)
grid = lambda META: (triton.cdiv(dim, META['BLOCK_SIZE_M']), batch, nheads)
z_strides = ((z.stride(0), z.stride(1), z.stride(2)) if z is not None else
(0, 0, 0))
# We don't want autotune since it will overwrite the state
# We instead tune by hand.
BLOCK_SIZE_M, num_warps = ((32, 4) if dstate <= 16 else
((16, 4) if dstate <= 32 else
((8, 4) if dstate <= 64 else
((4, 4) if dstate <= 128 else ((4, 8))))))
tie_hdim = A.stride(-1) == 0 and A.stride(-2) == 0 and dt.stride(
-1) == 0 and dt_bias.stride(-1) == 0
with torch.cuda.device(x.device.index):
_selective_scan_update_kernel[grid](
state,
x,
dt,
dt_bias,
A,
B,
C,
D,
z,
out,
state_batch_indices,
pad_slot_id,
batch,
nheads,
dim,
dstate,
nheads // ngroups,
state.stride(0),
state.stride(1),
state.stride(2),
state.stride(3),
x.stride(0),
x.stride(1),
x.stride(2),
dt.stride(0),
dt.stride(1),
dt.stride(2),
*(dt_bias.stride(0),
dt_bias.stride(1)) if dt_bias is not None else 0,
A.stride(0),
A.stride(1),
A.stride(2),
B.stride(0),
B.stride(1),
B.stride(2),
C.stride(0),
C.stride(1),
C.stride(2),
*(D.stride(0), D.stride(1)) if D is not None else 0,
z_strides[0],
z_strides[1],
z_strides[2],
out.stride(0),
out.stride(1),
out.stride(2),
dt_softplus,
tie_hdim,
BLOCK_SIZE_M,
num_warps=num_warps,
)
if not has_heads:
out = out.squeeze(1)
return out
def selective_scan_fn(u,
ssm_states,
delta,
A,
B,
C,
D=None,
z=None,
delta_bias=None,
delta_softplus=False,
query_start_loc=None,
cache_indices=None,
has_initial_state=None,
pad_slot_id=PAD_SLOT_ID) -> torch.Tensor:
"""
u: (dim, total_length) for varlen or (batch, dim, seqlen)
applies changes in place.
ssm_states: (batch, dim, dstate) or (batch, nheads, dim, dstate)
applies changes in place.
delta: (dim, total_length) for varlen or (batch, dim, seqlen)
A: (dim, dstate)
B: (ngroups, dstate, total_length) for varlen or
(batch,ngroups,dstate,seqlen)
C: (ngroups, dstate, total_length) for varlen or
(batch,ngroups,dstate,seqlen)
D: (dim,)
z: (dim, total_length) for varlen or (batch, dim, seqlen)
dt_bias: (dim,) or (dim)
query_start_loc: (batch + 1) int32
The cumulative sequence lengths of the sequences in
the batch, used to index into sequence. prepended with 0.
for example: query_start_loc = torch.Tensor([0,10,16,17]),
x.shape=(dim,17)
cache_indices: (batch) int32
A tensor with each cell is a correspondent
input and output ssm_state index
has_initial_state: (batch) bool
A tensor populated with ones and zeros,
indicate if the ssm_state at the corresponding index should be
used as initial state. Not providing argument assumes
there's no initial state
pad_slot_id: int
if cache_indices is passed, lets the kernel identify padding entries
that will not be processed,
for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id]
in this case, the kernel will not process entries at indices 0 and 3
returns
output: (dim, total_length) for varlen or (batch, dim, seqlen)
supports inplace replacement
"""
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
if B.dim() == 3 and query_start_loc is None:
B = B.unsqueeze(1)
if B.dim() == 2 and query_start_loc is not None:
B = B.unsqueeze(0)
if C.dim() == 3 and query_start_loc is None:
C = C.unsqueeze(1)
if C.dim() == 2 and query_start_loc is not None:
C = C.unsqueeze(0)
ops.selective_scan_fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus,
query_start_loc, cache_indices, has_initial_state,
ssm_states, pad_slot_id)
if z is None:
return delta # output written inplace to delta
else:
return z # output written inplace to z