mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 02:15:01 +08:00
Signed-off-by: Luka Govedič <lgovedic@redhat.com> Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
231 lines
7.0 KiB
Python
231 lines
7.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import tempfile
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.quantization.utils import is_quant_method_supported
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.config import CompilationConfig, CompilationMode, CUDAGraphMode, PassConfig
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import is_torch_equal_or_newer
|
|
|
|
from ..utils import create_new_process_for_each_test
|
|
|
|
|
|
def models_list(*, all: bool = True, keywords: list[str] | None = None):
|
|
TEST_MODELS: list[tuple[str, dict[str, Any]]] = [
|
|
("facebook/opt-125m", {}),
|
|
(
|
|
"neuralmagic/Llama-3.2-1B-Instruct-FP8-dynamic",
|
|
{"dtype": torch.float16},
|
|
),
|
|
("meta-llama/Llama-3.2-1B-Instruct", {}),
|
|
]
|
|
|
|
if all:
|
|
TEST_MODELS.extend(
|
|
[
|
|
("neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8", {}),
|
|
(
|
|
"nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change",
|
|
{"dtype": torch.float16},
|
|
),
|
|
]
|
|
)
|
|
|
|
# TODO: figure out why this fails.
|
|
if False and is_quant_method_supported("gguf"): # noqa: SIM223
|
|
TEST_MODELS.append(
|
|
("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", {"quantization": "gguf"})
|
|
)
|
|
|
|
if is_quant_method_supported("gptq"):
|
|
TEST_MODELS.append(
|
|
("TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ", {"quantization": "gptq"})
|
|
)
|
|
|
|
if is_quant_method_supported("gptq_marlin"):
|
|
TEST_MODELS.append(
|
|
(
|
|
"TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ",
|
|
{"quantization": "gptq_marlin"},
|
|
)
|
|
)
|
|
|
|
if is_quant_method_supported("gptq_marlin_24"):
|
|
TEST_MODELS.append(
|
|
(
|
|
"alexm-nm/tinyllama-24-marlin24-4bit-g128",
|
|
{"quantization": "gptq_marlin_24"},
|
|
)
|
|
)
|
|
|
|
if not current_platform.is_rocm() and is_quant_method_supported("awq"):
|
|
TEST_MODELS.append(
|
|
("TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ", {"quantization": "AWQ"})
|
|
)
|
|
|
|
if keywords is None:
|
|
return TEST_MODELS
|
|
|
|
# filter by keywords
|
|
pred = lambda model: any(keyword in model[0] for keyword in keywords)
|
|
return list(filter(pred, TEST_MODELS))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"compilation_mode",
|
|
[CompilationMode.DYNAMO_TRACE_ONCE, CompilationMode.VLLM_COMPILE],
|
|
)
|
|
@pytest.mark.parametrize("model, model_kwargs", models_list(all=True))
|
|
@create_new_process_for_each_test()
|
|
def test_full_graph(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
model: str,
|
|
model_kwargs: dict[str, Any],
|
|
compilation_mode: int,
|
|
):
|
|
if (
|
|
"w8a8" in model
|
|
or "w8w8" in model
|
|
and current_platform.has_device_capability((10, 0))
|
|
):
|
|
# int8 removed on Blackwell:
|
|
pytest.skip("int8 support removed on Blackwell")
|
|
|
|
with monkeypatch.context():
|
|
print(f"MODEL={model}")
|
|
|
|
run_model(compilation_mode, model, **model_kwargs)
|
|
|
|
|
|
# TODO(luka) add other supported compilation config scenarios here
|
|
@pytest.mark.parametrize(
|
|
"compilation_config, model, model_kwargs",
|
|
[
|
|
# additional compile sizes, only some of the models
|
|
(
|
|
CompilationConfig(mode=CompilationMode.VLLM_COMPILE, compile_sizes=[1, 2]),
|
|
*model_info,
|
|
)
|
|
for model_info in models_list(all=False)
|
|
]
|
|
+ [
|
|
# RMSNorm + quant fusion, only 8-bit quant models
|
|
(
|
|
CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
custom_ops=["+rms_norm"],
|
|
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
|
|
),
|
|
*model_info,
|
|
)
|
|
for model_info in models_list(keywords=["FP8-dynamic", "quantized.w8a8"])
|
|
]
|
|
+ [
|
|
# Test depyf integration works
|
|
(
|
|
CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
debug_dump_path=Path(tempfile.gettempdir()),
|
|
),
|
|
"facebook/opt-125m",
|
|
{},
|
|
),
|
|
]
|
|
+ [
|
|
# graph inductor partition
|
|
(
|
|
CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
# inductor graph partition uses
|
|
# torch._C.Tag.cudagraph_unsafe to specify splitting ops
|
|
use_inductor_graph_partition=True,
|
|
cudagraph_mode=CUDAGraphMode.PIECEWISE,
|
|
compile_sizes=[1, 2],
|
|
),
|
|
*model_info,
|
|
)
|
|
for model_info in models_list(all=False)
|
|
if is_torch_equal_or_newer("2.9.0.dev")
|
|
],
|
|
)
|
|
# only test some of the models
|
|
@create_new_process_for_each_test()
|
|
def test_custom_compile_config(
|
|
compilation_config: CompilationConfig,
|
|
model: str,
|
|
model_kwargs: dict[str, Any],
|
|
):
|
|
if (
|
|
"w8a8" in model
|
|
or "w8w8" in model
|
|
and current_platform.has_device_capability((10, 0))
|
|
):
|
|
# int8 removed on Blackwell:
|
|
pytest.skip("int8 support removed on Blackwell")
|
|
|
|
if compilation_config.use_inductor_graph_partition and not is_torch_equal_or_newer(
|
|
"2.9.0.dev"
|
|
):
|
|
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
|
|
|
|
print(f"MODEL={model}")
|
|
run_model(compilation_config, model, **model_kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"compilation_mode",
|
|
[CompilationMode.NONE, CompilationMode.VLLM_COMPILE],
|
|
)
|
|
def test_fp8_kv_scale_compile(compilation_mode: int):
|
|
model = "Qwen/Qwen2-0.5B"
|
|
model_kwargs = {
|
|
"quantization": "fp8",
|
|
"kv_cache_dtype": "fp8_e4m3",
|
|
"calculate_kv_scales": True,
|
|
"max_model_len": 512,
|
|
}
|
|
run_model(compilation_mode, model, **model_kwargs)
|
|
|
|
|
|
def run_model(compile_config: int | CompilationConfig, model: str, **model_kwargs):
|
|
compilation_config = (
|
|
compile_config
|
|
if isinstance(compile_config, CompilationConfig)
|
|
else CompilationConfig(level=compile_config)
|
|
)
|
|
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
sampling_params = SamplingParams(temperature=0)
|
|
# Allow override from model_kwargs
|
|
model_kwargs = {"tensor_parallel_size": 1, **model_kwargs}
|
|
model_kwargs = {"disable_custom_all_reduce": True, **model_kwargs}
|
|
|
|
# No cudagraphs by default
|
|
if compilation_config.cudagraph_mode is None:
|
|
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
|
|
|
llm = LLM(
|
|
model=model,
|
|
compilation_config=compilation_config,
|
|
**model_kwargs,
|
|
)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
# Print the outputs.
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|