vllm/tests/benchmarks/test_random_multimodal_dataset_video.py
Eugene Khvedchenya 5e72216d17
Feature/video support in random mm dataset (#25963)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenia@nvidia.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-29 18:24:52 +08:00

399 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import os
from tempfile import NamedTemporaryFile
from typing import Any, cast
import cv2
import pytest
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.benchmarks.datasets import RandomMultiModalDataset, SampleRequest
@pytest.fixture(scope="session")
def hf_tokenizer() -> PreTrainedTokenizerBase:
"""Use a small, commonly available tokenizer."""
return AutoTokenizer.from_pretrained("gpt2")
@pytest.fixture
def video_dataset() -> RandomMultiModalDataset:
"""Create a RandomMultiModalDataset instance for testing."""
return RandomMultiModalDataset(random_seed=42)
@pytest.mark.benchmark
def test_generate_synthetic_video_different_seeds():
"""Test that different seeds produce different videos."""
dataset1 = RandomMultiModalDataset(random_seed=123)
dataset2 = RandomMultiModalDataset(random_seed=456)
width, height, num_frames = 64, 48, 8
video1 = dataset1.generate_synthetic_video(width, height, num_frames)
video2 = dataset2.generate_synthetic_video(width, height, num_frames)
# Videos should be different due to different seeds
assert video1["bytes"] != video2["bytes"]
@pytest.mark.benchmark
def test_map_config_to_modality(video_dataset: RandomMultiModalDataset):
"""Test modality mapping for different configurations."""
# Test image configuration (num_frames = 1)
assert video_dataset.map_config_to_modality((256, 256, 1)) == "image"
assert video_dataset.map_config_to_modality((720, 1280, 1)) == "image"
# Test video configurations (num_frames > 1)
assert video_dataset.map_config_to_modality((256, 256, 8)) == "video"
assert video_dataset.map_config_to_modality((720, 1280, 16)) == "video"
assert video_dataset.map_config_to_modality((64, 64, 32)) == "video"
# Test invalid configurations
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
video_dataset.map_config_to_modality((256, 256, 0))
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
video_dataset.map_config_to_modality((256, 256, -1))
@pytest.mark.benchmark
def test_generate_mm_item_video(video_dataset: RandomMultiModalDataset):
"""Test generating multimodal items for video configurations."""
# Test video item generation
video_config = (64, 48, 8) # height, width, num_frames
result = video_dataset.generate_mm_item(video_config)
# Check the result structure matches OpenAI API format
assert isinstance(result, dict)
assert result["type"] == "video_url"
assert "video_url" in result
assert "url" in result["video_url"]
# Check that the URL is a data URL with base64 encoded video
url = result["video_url"]["url"]
assert url.startswith("data:video/mp4;base64,")
# Decode and verify the video content
base64_data = url.split(",")[1]
video_bytes = base64.b64decode(base64_data)
assert len(video_bytes) > 0
# Verify the video can be decoded
with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
temp_path = temp_file.name
temp_file.write(video_bytes)
try:
cap = cv2.VideoCapture(temp_path)
assert cap.isOpened()
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
assert frame_count == 8
assert frame_width == 48
assert frame_height == 64
cap.release()
finally:
if os.path.exists(temp_path):
os.unlink(temp_path)
@pytest.mark.benchmark
def test_generate_mm_item_image(video_dataset: RandomMultiModalDataset):
"""Test generating multimodal items for image configurations."""
# Test image item generation
image_config = (64, 48, 1) # height, width, num_frames=1
result = video_dataset.generate_mm_item(image_config)
# Check the result structure matches OpenAI API format
assert isinstance(result, dict)
assert result["type"] == "image_url"
assert "image_url" in result
assert "url" in result["image_url"]
# Check that the URL is a data URL with base64 encoded image
url = result["image_url"]["url"]
assert url.startswith("data:image/jpeg;base64,")
@pytest.mark.benchmark
def test_generate_mm_item_invalid_config(video_dataset: RandomMultiModalDataset):
"""Test error handling for invalid configurations."""
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
video_dataset.generate_mm_item((256, 256, 0))
@pytest.mark.benchmark
def test_sample_with_video_buckets(
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
):
"""Test sampling with video bucket configurations."""
# Configure bucket with video probability > 0
bucket_config = {
(64, 64, 1): 0.3, # Images
(64, 64, 8): 0.7, # Videos
}
limit_mm_per_prompt = {"image": 5, "video": 3}
samples = video_dataset.sample(
tokenizer=hf_tokenizer,
num_requests=5,
base_items_per_request=2,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
assert len(samples) == 5
# Check that samples contain both images and videos
video_count = 0
image_count = 0
for sample in samples:
assert isinstance(sample, SampleRequest)
assert sample.multi_modal_data is not None
assert isinstance(sample.multi_modal_data, list)
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
assert len(mm_data) == 2 # base_items_per_request
for item in mm_data:
if item["type"] == "video_url":
video_count += 1
# Verify video URL format
url = item["video_url"]["url"]
assert url.startswith("data:video/mp4;base64,")
elif item["type"] == "image_url":
image_count += 1
# Verify image URL format
url = item["image_url"]["url"]
assert url.startswith("data:image/jpeg;base64,")
# Should have some videos due to 0.7 probability
assert video_count > 0
assert image_count > 0
@pytest.mark.benchmark
def test_sample_video_only_buckets(
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
):
"""Test sampling with only video buckets."""
bucket_config = {
(64, 64, 8): 1.0, # Only videos
}
limit_mm_per_prompt = {"image": 0, "video": 2}
samples = video_dataset.sample(
tokenizer=hf_tokenizer,
num_requests=3,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
assert len(samples) == 3
for sample in samples:
assert isinstance(sample, SampleRequest)
assert sample.multi_modal_data is not None
assert isinstance(sample.multi_modal_data, list)
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
assert len(mm_data) == 1
item = mm_data[0]
assert item["type"] == "video_url"
url = item["video_url"]["url"]
assert url.startswith("data:video/mp4;base64,")
@pytest.mark.benchmark
def test_sample_respects_video_limits(
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
):
"""Test that sampling respects video limits per prompt."""
bucket_config = {
(64, 64, 8): 1.0, # Only videos
}
# Set very low video limit
limit_mm_per_prompt = {"image": 0, "video": 1}
samples = video_dataset.sample(
tokenizer=hf_tokenizer,
num_requests=3,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
assert len(samples) == 3
for sample in samples:
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
assert len(mm_data) <= 1 # Should respect video limit
@pytest.mark.benchmark
def test_sample_mixed_buckets_with_zero_probability(
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
):
"""Test sampling with mixed buckets including zero probability entries."""
bucket_config = {
(64, 64, 1): 0.5, # Images
(64, 64, 8): 0.5, # Videos
(128, 128, 16): 0.0, # Zero probability videos (should be ignored)
}
limit_mm_per_prompt = {"image": 2, "video": 2}
samples = video_dataset.sample(
tokenizer=hf_tokenizer,
num_requests=4,
base_items_per_request=2,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
assert len(samples) == 4
# Should only see 64x64 videos, not 128x128 videos
for sample in samples:
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
for item in mm_data:
if item["type"] == "video_url":
# Decode video to verify dimensions
url = item["video_url"]["url"]
base64_data = url.split(",")[1]
video_bytes = base64.b64decode(base64_data)
with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: # noqa
temp_path = temp_file.name
temp_file.write(video_bytes)
try:
cap = cv2.VideoCapture(temp_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Should be 64x64, not 128x128
assert frame_width == 64
assert frame_height == 64
finally:
if os.path.exists(temp_path):
os.unlink(temp_path)
@pytest.mark.benchmark
def test_sample_deterministic_with_videos(hf_tokenizer: PreTrainedTokenizerBase):
"""Test that sampling with videos is deterministic with same seed."""
dataset1 = RandomMultiModalDataset(random_seed=123)
dataset2 = RandomMultiModalDataset(random_seed=123)
bucket_config = {
(64, 64, 1): 0.3, # Images
(64, 64, 8): 0.7, # Videos
}
limit_mm_per_prompt = {"image": 2, "video": 2}
samples1 = dataset1.sample(
tokenizer=hf_tokenizer,
num_requests=3,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
samples2 = dataset2.sample(
tokenizer=hf_tokenizer,
num_requests=3,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
assert len(samples1) == len(samples2)
# Compare multimodal data
for s1, s2 in zip(samples1, samples2):
assert s1.multi_modal_data == s2.multi_modal_data
@pytest.mark.benchmark
def test_sample_different_seeds_produce_different_videos(
hf_tokenizer: PreTrainedTokenizerBase,
):
"""Test that different seeds produce different video content."""
dataset1 = RandomMultiModalDataset(random_seed=123)
dataset2 = RandomMultiModalDataset(random_seed=456)
bucket_config = {
(64, 64, 8): 1.0, # Only videos
}
limit_mm_per_prompt = {"image": 0, "video": 1}
samples1 = dataset1.sample(
tokenizer=hf_tokenizer,
num_requests=2,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
samples2 = dataset2.sample(
tokenizer=hf_tokenizer,
num_requests=2,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
input_len=20,
output_len=5,
)
# Video content should be different
for s1, s2 in zip(samples1, samples2):
mm_data1 = cast(list[dict[str, Any]], s1.multi_modal_data)
mm_data2 = cast(list[dict[str, Any]], s2.multi_modal_data)
assert len(mm_data1) == len(mm_data2) == 1
url1 = mm_data1[0]["video_url"]["url"]
url2 = mm_data2[0]["video_url"]["url"]
assert url1 != url2 # Different video content