mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 20:25:01 +08:00
Signed-off-by: whx-sjtu <2952154980@qq.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
354 lines
16 KiB
Python
354 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/vllm-project/vllm/blob/v0.7.3/vllm/model_executor/models/deepseek_mtp.py
|
|
from collections.abc import Iterable
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import ReplicatedLinear
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.quantization.utils.int8_utils import (
|
|
block_dequant)
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.longcat_flash import FlashConfig
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .deepseek_v2 import DeepseekV2DecoderLayer
|
|
from .interfaces import SupportsPP
|
|
from .utils import maybe_prefix
|
|
|
|
|
|
class LongCatMultiTokenPredictorLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
vllm_config: VllmConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.eh_proj = ReplicatedLinear(2 * config.hidden_size,
|
|
config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix="eh_proj")
|
|
self.mtp_block = DeepseekV2DecoderLayer(vllm_config, prefix)
|
|
self.final_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_index: int = 0,
|
|
) -> torch.Tensor:
|
|
assert inputs_embeds is not None
|
|
inputs_embeds = self.enorm(inputs_embeds)
|
|
previous_hidden_states = self.hnorm(previous_hidden_states)
|
|
|
|
hidden_states, _ = self.eh_proj(
|
|
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
|
|
|
hidden_states, residual = self.mtp_block(positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=None)
|
|
hidden_states, _ = self.final_layernorm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class LongCatMultiTokenPredictor(nn.Module):
|
|
|
|
def __init__(self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = ""):
|
|
super().__init__()
|
|
config = FlashConfig(**vllm_config.model_config.hf_config.__dict__)
|
|
vllm_config.model_config.hf_config.intermediate_size \
|
|
= config.intermediate_size
|
|
self.mtp_start_layer_idx = config.num_hidden_layers * 2
|
|
self.num_mtp_layers = 1
|
|
self.layers = torch.nn.ModuleDict({
|
|
str(idx):
|
|
LongCatMultiTokenPredictorLayer(
|
|
config,
|
|
prefix=f"{prefix}.layers.{idx}",
|
|
vllm_config=vllm_config,
|
|
quant_config=quant_config,
|
|
)
|
|
for idx in range(self.mtp_start_layer_idx,
|
|
self.mtp_start_layer_idx + self.num_mtp_layers)
|
|
})
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
|
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
|
|
input_ids,
|
|
positions,
|
|
previous_hidden_states,
|
|
inputs_embeds,
|
|
current_step_idx,
|
|
)
|
|
|
|
|
|
class LongCatFlashMTP(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
# LongCat MTP without MoE layers
|
|
vllm_config.model_config.hf_config.n_routed_experts = None
|
|
self.config = FlashConfig(
|
|
**vllm_config.model_config.hf_config.__dict__)
|
|
self.quant_config = None if "mtp" in getattr(
|
|
self.config, "disable_quant_module",
|
|
[]) else vllm_config.quant_config
|
|
|
|
self.model = LongCatMultiTokenPredictor(vllm_config=vllm_config,
|
|
quant_config=self.quant_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "model"))
|
|
self.lm_head = ParallelLMHead(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
quant_config=self.quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.logits_processor = LogitsProcessor(self.config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, hidden_states,
|
|
inputs_embeds, spec_step_idx)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> Optional[torch.Tensor]:
|
|
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
("fused_qkv_a_proj", "q_a_proj", 0),
|
|
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
|
|
]
|
|
|
|
new_to_old_names_mapping = {
|
|
"model.mtp.embed_tokens.weight":
|
|
"model.layers.0.embed_tokens.weight",
|
|
"model.mtp.layers.0.eh_proj.weight": "eh_proj.weight",
|
|
"model.mtp.layers.0.eh_proj.weight_scale_inv":
|
|
"eh_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.enorm.m.weight": "enorm.weight",
|
|
"model.mtp.layers.0.hnorm.m.weight": "hnorm.weight",
|
|
"model.mtp.layers.0.input_layernorm.weight":
|
|
"model.layers.0.input_layernorm.weight",
|
|
"model.mtp.layers.0.post_attention_layernorm.weight":
|
|
"model.layers.0.post_attention_layernorm.weight",
|
|
"model.mtp.layers.0.self_attn.kv_a_layernorm.weight":
|
|
"model.layers.0.self_attn.kv_a_layernorm.weight",
|
|
"model.mtp.layers.0.self_attn.kv_a_proj_with_mqa.weight":
|
|
"model.layers.0.self_attn.kv_a_proj_with_mqa.weight",
|
|
"model.mtp.layers.0.self_attn.kv_a_proj_with_mqa.weight_scale_inv":
|
|
"model.layers.0.self_attn.kv_a_proj_with_mqa.weight_scale_inv",
|
|
"model.mtp.layers.0.self_attn.kv_b_proj.weight":
|
|
"model.layers.0.self_attn.kv_b_proj.weight",
|
|
"model.mtp.layers.0.self_attn.kv_b_proj.weight_scale_inv":
|
|
"model.layers.0.self_attn.kv_b_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.self_attn.o_proj.weight":
|
|
"model.layers.0.self_attn.o_proj.weight",
|
|
"model.mtp.layers.0.self_attn.o_proj.weight_scale_inv":
|
|
"model.layers.0.self_attn.o_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.self_attn.q_a_layernorm.weight":
|
|
"model.layers.0.self_attn.q_a_layernorm.weight",
|
|
"model.mtp.layers.0.self_attn.q_a_proj.weight":
|
|
"model.layers.0.self_attn.q_a_proj.weight",
|
|
"model.mtp.layers.0.self_attn.q_a_proj.weight_scale_inv":
|
|
"model.layers.0.self_attn.q_a_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.self_attn.q_b_proj.weight":
|
|
"model.layers.0.self_attn.q_b_proj.weight",
|
|
"model.mtp.layers.0.self_attn.q_b_proj.weight_scale_inv":
|
|
"model.layers.0.self_attn.q_b_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.transformer_layer.mlp.down_proj.weight":
|
|
"model.layers.0.mlp.down_proj.weight",
|
|
"model.mtp.layers.0.transformer_layer.mlp.down_proj.weight_scale_inv":
|
|
"model.layers.0.mlp.down_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.transformer_layer.mlp.gate_proj.weight":
|
|
"model.layers.0.mlp.gate_proj.weight",
|
|
"model.mtp.layers.0.transformer_layer.mlp.gate_proj.weight_scale_inv":
|
|
"model.layers.0.mlp.gate_proj.weight_scale_inv",
|
|
"model.mtp.layers.0.transformer_layer.mlp.up_proj.weight":
|
|
"model.layers.0.mlp.up_proj.weight",
|
|
"model.mtp.layers.0.transformer_layer.mlp.up_proj.weight_scale_inv":
|
|
"model.layers.0.mlp.up_proj.weight_scale_inv",
|
|
"model.mtp.norm.weight": "final_layernorm.weight",
|
|
}
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
spec_layer = self.get_spec_layer_idx_from_weight_name(
|
|
self.config, name)
|
|
if spec_layer is None:
|
|
continue
|
|
name = self._rewrite_spec_layer_name(spec_layer, name,
|
|
new_to_old_names_mapping)
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if (("mlp.experts." in name) and name not in params_dict):
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
# QKV fusion is optional, fall back to normal
|
|
# weight loading if it's not enabled
|
|
if ((param_name == "fused_qkv_a_proj")
|
|
and name not in params_dict):
|
|
continue
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
# According to DeepSeek-V3 Technical Report, MTP modules
|
|
# shares embedding layer. We only load the first weights.
|
|
if (spec_layer != self.model.mtp_start_layer_idx
|
|
and ".layers" not in name):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
spec_layer_id = self.config.num_hidden_layers * 2
|
|
self_attn = self.model.layers[str(spec_layer_id)].mtp_block.self_attn
|
|
if hasattr(
|
|
self.quant_config,
|
|
"weight_block_size") and self_attn.kv_b_proj.weight.dtype in (
|
|
torch.float8_e4m3fn,
|
|
torch.float8_e4m3fnuz,
|
|
):
|
|
weight_block_size = self.quant_config.weight_block_size
|
|
if weight_block_size is not None:
|
|
dtype = torch.get_default_dtype()
|
|
w = block_dequant(self_attn.kv_b_proj.weight,
|
|
self_attn.kv_b_proj.weight_scale_inv,
|
|
weight_block_size).to(dtype)
|
|
else:
|
|
w = self_attn.kv_b_proj.weight
|
|
else:
|
|
w = self_attn.kv_b_proj.weight
|
|
w_kc, w_vc = w.unflatten(
|
|
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)).split(
|
|
[self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
|
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
|
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
|
|
if self.config.mla_scale_q_lora:
|
|
self_attn.q_a_layernorm.weight.data *= (
|
|
self.config.hidden_size / self.config.q_lora_rank)**0.5
|
|
if self.config.mla_scale_kv_lora:
|
|
self_attn.kv_a_layernorm.weight.data *= (
|
|
self.config.hidden_size / self.config.kv_lora_rank)**0.5
|
|
return loaded_params
|
|
|
|
def _rewrite_spec_layer_name(self, spec_layer: int, name: str,
|
|
new_to_old_names_mapping: dict) -> str:
|
|
"""
|
|
Rewrite the weight name to match the format of the original model.
|
|
Add .mtp_block for modules in transformer layer block for spec layer
|
|
and rename shared layer weights to be top level.
|
|
"""
|
|
if name in new_to_old_names_mapping:
|
|
name = new_to_old_names_mapping[name]
|
|
spec_layer_weight_names = [
|
|
"embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head"
|
|
]
|
|
if name.startswith("enorm") or name.startswith(
|
|
"hnorm") or name.startswith("eh_proj") or name.startswith(
|
|
"final_layernorm"):
|
|
name = "model.layers." + str(spec_layer) + "." + name
|
|
shared_weight_names = ["embed_tokens"]
|
|
spec_layer_weight = False
|
|
shared_weight = False
|
|
for weight_name in spec_layer_weight_names:
|
|
if weight_name in name:
|
|
spec_layer_weight = True
|
|
if weight_name in shared_weight_names:
|
|
shared_weight = True
|
|
break
|
|
if not spec_layer_weight:
|
|
# treat rest weights as weights for transformer layer block
|
|
name = name.replace("model.layers.0.",
|
|
f"model.layers.{spec_layer}.mtp_block.")
|
|
elif shared_weight:
|
|
# treat shared weights as top level weights
|
|
name = name.replace("model.layers.0.", "model.")
|
|
return name
|
|
|
|
def get_spec_layer_idx_from_weight_name(self, config: PretrainedConfig,
|
|
weight_name: str) -> Optional[int]:
|
|
if "model.mtp" in weight_name:
|
|
return config.num_hidden_layers * 2
|
|
return None
|