vllm/vllm/model_executor/models/longcat_flash_mtp.py
whx fac9b430ec [Model] Supplement to PR 24862: Pass param prefix to LLMHead (#25805)
Signed-off-by: whx-sjtu <2952154980@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00

354 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/vllm-project/vllm/blob/v0.7.3/vllm/model_executor/models/deepseek_mtp.py
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from vllm.config import VllmConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.utils.int8_utils import (
block_dequant)
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.longcat_flash import FlashConfig
from vllm.sequence import IntermediateTensors
from .deepseek_v2 import DeepseekV2DecoderLayer
from .interfaces import SupportsPP
from .utils import maybe_prefix
class LongCatMultiTokenPredictorLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
vllm_config: VllmConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = ReplicatedLinear(2 * config.hidden_size,
config.hidden_size,
bias=False,
quant_config=quant_config,
prefix="eh_proj")
self.mtp_block = DeepseekV2DecoderLayer(vllm_config, prefix)
self.final_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_index: int = 0,
) -> torch.Tensor:
assert inputs_embeds is not None
inputs_embeds = self.enorm(inputs_embeds)
previous_hidden_states = self.hnorm(previous_hidden_states)
hidden_states, _ = self.eh_proj(
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
hidden_states, residual = self.mtp_block(positions=positions,
hidden_states=hidden_states,
residual=None)
hidden_states, _ = self.final_layernorm(hidden_states, residual)
return hidden_states
class LongCatMultiTokenPredictor(nn.Module):
def __init__(self,
*,
vllm_config: VllmConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
config = FlashConfig(**vllm_config.model_config.hf_config.__dict__)
vllm_config.model_config.hf_config.intermediate_size \
= config.intermediate_size
self.mtp_start_layer_idx = config.num_hidden_layers * 2
self.num_mtp_layers = 1
self.layers = torch.nn.ModuleDict({
str(idx):
LongCatMultiTokenPredictorLayer(
config,
prefix=f"{prefix}.layers.{idx}",
vllm_config=vllm_config,
quant_config=quant_config,
)
for idx in range(self.mtp_start_layer_idx,
self.mtp_start_layer_idx + self.num_mtp_layers)
})
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
current_step_idx = (spec_step_idx % self.num_mtp_layers)
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
input_ids,
positions,
previous_hidden_states,
inputs_embeds,
current_step_idx,
)
class LongCatFlashMTP(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
# LongCat MTP without MoE layers
vllm_config.model_config.hf_config.n_routed_experts = None
self.config = FlashConfig(
**vllm_config.model_config.hf_config.__dict__)
self.quant_config = None if "mtp" in getattr(
self.config, "disable_quant_module",
[]) else vllm_config.quant_config
self.model = LongCatMultiTokenPredictor(vllm_config=vllm_config,
quant_config=self.quant_config,
prefix=maybe_prefix(
prefix, "model"))
self.lm_head = ParallelLMHead(
self.config.vocab_size,
self.config.hidden_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(self.config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, hidden_states,
inputs_embeds, spec_step_idx)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
spec_step_idx: int = 0,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
("fused_qkv_a_proj", "q_a_proj", 0),
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
]
new_to_old_names_mapping = {
"model.mtp.embed_tokens.weight":
"model.layers.0.embed_tokens.weight",
"model.mtp.layers.0.eh_proj.weight": "eh_proj.weight",
"model.mtp.layers.0.eh_proj.weight_scale_inv":
"eh_proj.weight_scale_inv",
"model.mtp.layers.0.enorm.m.weight": "enorm.weight",
"model.mtp.layers.0.hnorm.m.weight": "hnorm.weight",
"model.mtp.layers.0.input_layernorm.weight":
"model.layers.0.input_layernorm.weight",
"model.mtp.layers.0.post_attention_layernorm.weight":
"model.layers.0.post_attention_layernorm.weight",
"model.mtp.layers.0.self_attn.kv_a_layernorm.weight":
"model.layers.0.self_attn.kv_a_layernorm.weight",
"model.mtp.layers.0.self_attn.kv_a_proj_with_mqa.weight":
"model.layers.0.self_attn.kv_a_proj_with_mqa.weight",
"model.mtp.layers.0.self_attn.kv_a_proj_with_mqa.weight_scale_inv":
"model.layers.0.self_attn.kv_a_proj_with_mqa.weight_scale_inv",
"model.mtp.layers.0.self_attn.kv_b_proj.weight":
"model.layers.0.self_attn.kv_b_proj.weight",
"model.mtp.layers.0.self_attn.kv_b_proj.weight_scale_inv":
"model.layers.0.self_attn.kv_b_proj.weight_scale_inv",
"model.mtp.layers.0.self_attn.o_proj.weight":
"model.layers.0.self_attn.o_proj.weight",
"model.mtp.layers.0.self_attn.o_proj.weight_scale_inv":
"model.layers.0.self_attn.o_proj.weight_scale_inv",
"model.mtp.layers.0.self_attn.q_a_layernorm.weight":
"model.layers.0.self_attn.q_a_layernorm.weight",
"model.mtp.layers.0.self_attn.q_a_proj.weight":
"model.layers.0.self_attn.q_a_proj.weight",
"model.mtp.layers.0.self_attn.q_a_proj.weight_scale_inv":
"model.layers.0.self_attn.q_a_proj.weight_scale_inv",
"model.mtp.layers.0.self_attn.q_b_proj.weight":
"model.layers.0.self_attn.q_b_proj.weight",
"model.mtp.layers.0.self_attn.q_b_proj.weight_scale_inv":
"model.layers.0.self_attn.q_b_proj.weight_scale_inv",
"model.mtp.layers.0.transformer_layer.mlp.down_proj.weight":
"model.layers.0.mlp.down_proj.weight",
"model.mtp.layers.0.transformer_layer.mlp.down_proj.weight_scale_inv":
"model.layers.0.mlp.down_proj.weight_scale_inv",
"model.mtp.layers.0.transformer_layer.mlp.gate_proj.weight":
"model.layers.0.mlp.gate_proj.weight",
"model.mtp.layers.0.transformer_layer.mlp.gate_proj.weight_scale_inv":
"model.layers.0.mlp.gate_proj.weight_scale_inv",
"model.mtp.layers.0.transformer_layer.mlp.up_proj.weight":
"model.layers.0.mlp.up_proj.weight",
"model.mtp.layers.0.transformer_layer.mlp.up_proj.weight_scale_inv":
"model.layers.0.mlp.up_proj.weight_scale_inv",
"model.mtp.norm.weight": "final_layernorm.weight",
}
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
spec_layer = self.get_spec_layer_idx_from_weight_name(
self.config, name)
if spec_layer is None:
continue
name = self._rewrite_spec_layer_name(spec_layer, name,
new_to_old_names_mapping)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if (("mlp.experts." in name) and name not in params_dict):
continue
name = name.replace(weight_name, param_name)
# QKV fusion is optional, fall back to normal
# weight loading if it's not enabled
if ((param_name == "fused_qkv_a_proj")
and name not in params_dict):
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# According to DeepSeek-V3 Technical Report, MTP modules
# shares embedding layer. We only load the first weights.
if (spec_layer != self.model.mtp_start_layer_idx
and ".layers" not in name):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
spec_layer_id = self.config.num_hidden_layers * 2
self_attn = self.model.layers[str(spec_layer_id)].mtp_block.self_attn
if hasattr(
self.quant_config,
"weight_block_size") and self_attn.kv_b_proj.weight.dtype in (
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
):
weight_block_size = self.quant_config.weight_block_size
if weight_block_size is not None:
dtype = torch.get_default_dtype()
w = block_dequant(self_attn.kv_b_proj.weight,
self_attn.kv_b_proj.weight_scale_inv,
weight_block_size).to(dtype)
else:
w = self_attn.kv_b_proj.weight
else:
w = self_attn.kv_b_proj.weight
w_kc, w_vc = w.unflatten(
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)).split(
[self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
if self.config.mla_scale_q_lora:
self_attn.q_a_layernorm.weight.data *= (
self.config.hidden_size / self.config.q_lora_rank)**0.5
if self.config.mla_scale_kv_lora:
self_attn.kv_a_layernorm.weight.data *= (
self.config.hidden_size / self.config.kv_lora_rank)**0.5
return loaded_params
def _rewrite_spec_layer_name(self, spec_layer: int, name: str,
new_to_old_names_mapping: dict) -> str:
"""
Rewrite the weight name to match the format of the original model.
Add .mtp_block for modules in transformer layer block for spec layer
and rename shared layer weights to be top level.
"""
if name in new_to_old_names_mapping:
name = new_to_old_names_mapping[name]
spec_layer_weight_names = [
"embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head"
]
if name.startswith("enorm") or name.startswith(
"hnorm") or name.startswith("eh_proj") or name.startswith(
"final_layernorm"):
name = "model.layers." + str(spec_layer) + "." + name
shared_weight_names = ["embed_tokens"]
spec_layer_weight = False
shared_weight = False
for weight_name in spec_layer_weight_names:
if weight_name in name:
spec_layer_weight = True
if weight_name in shared_weight_names:
shared_weight = True
break
if not spec_layer_weight:
# treat rest weights as weights for transformer layer block
name = name.replace("model.layers.0.",
f"model.layers.{spec_layer}.mtp_block.")
elif shared_weight:
# treat shared weights as top level weights
name = name.replace("model.layers.0.", "model.")
return name
def get_spec_layer_idx_from_weight_name(self, config: PretrainedConfig,
weight_name: str) -> Optional[int]:
if "model.mtp" in weight_name:
return config.num_hidden_layers * 2
return None