Harry Mellor a8b70304d6
Update rope_scaling to rope_parameters in preparation for Transformers v5 (#28542)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-19 09:06:36 -08:00

364 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights."""
import json
from collections.abc import Iterable
from itertools import islice
from typing import Any
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class QWenMLP(nn.Module):
"""MLP for the language component of the Qwen model, which contains a
MergedColumnParallelLinear merging 2 outputs via silu activation."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str = "silu",
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config
)
self.c_proj = RowParallelLinear(
intermediate_size, hidden_size, bias=False, quant_config=quant_config
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.c_proj(x)
return x
class QWenAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
rope_parameters: dict[str, Any] | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = hidden_size // self.total_num_heads
self.c_attn = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_attn",
)
self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
self.scaling = self.head_dim**-0.5
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
rope_parameters=rope_parameters,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.c_proj(attn_output)
return output
class QWenBlock(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.attn = QWenAttention(
config.hidden_size,
config.num_attention_heads,
config.max_position_embeddings,
rope_parameters=config.rope_parameters,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = QWenMLP(
config.hidden_size, config.intermediate_size // 2, quant_config=quant_config
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
else:
hidden_states, residual = self.ln_1(hidden_states, residual)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.ln_2(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class QWenModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.vocab_size = config.vocab_size
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.start_layer, self.end_layer, self.h = make_layers(
config.num_hidden_layers,
lambda prefix: QWenBlock(config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.h",
)
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.h, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.ln_f(hidden_states, residual)
return hidden_states
class QWenBaseModel(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
transformer_type: type[QWenModel] = QWenModel,
) -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.quant_config = quant_config
self.transformer = transformer_type(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "transformer")
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.transformer.wte.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors
)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "w2", 0),
("gate_up_proj", "w1", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class QWenLMHeadModel(QWenBaseModel, SupportsPP, SupportsLoRA):
packed_modules_mapping = {
"c_attn": ["c_attn"],
"gate_up_proj": [
"w2",
"w1",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
if hasattr(config, "visual"):
hf_overrides = {"architectures": ["QwenVLForConditionalGeneration"]}
raise RuntimeError(
"The configuration of this model indicates that it supports "
"vision inputs, but you instantiated the text-only version "
"of this model. Please use the vision model by setting "
f"`--hf-overrides '{json.dumps(hf_overrides)}'`"
)
super().__init__(vllm_config=vllm_config, prefix=prefix)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.transformer(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states