vllm/vllm/entrypoints/openai/serving_responses.py
Chen Zhang fe6d8257a1
[gpt-oss] Support tool call and implement MCP tool server (#22427)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-08 15:06:37 -07:00

747 lines
31 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import time
from collections.abc import AsyncGenerator, AsyncIterator
from contextlib import AsyncExitStack
from copy import copy
from http import HTTPStatus
from typing import Any, Callable, Final, Optional, Union
import jinja2
from fastapi import Request
from openai.types.responses import (ResponseFunctionToolCall,
ResponseOutputItem, ResponseOutputMessage,
ResponseOutputText, ResponseReasoningItem)
from openai.types.responses.response_reasoning_item import (
Content as ResponseReasoningTextContent)
from openai_harmony import Message as OpenAIHarmonyMessage
from vllm import envs
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.chat_utils import (ChatCompletionMessageParam,
ChatTemplateContentFormatOption)
from vllm.entrypoints.context import (ConversationContext, HarmonyContext,
SimpleContext, StreamingHarmonyContext)
from vllm.entrypoints.harmony_utils import (
get_developer_message, get_stop_tokens_for_assistant_actions,
get_system_message, get_user_message, parse_output_message,
parse_remaining_state, parse_response_input, render_for_completion)
from vllm.entrypoints.logger import RequestLogger
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ErrorResponse,
InputTokensDetails,
OutputTokensDetails,
RequestResponseMetadata,
ResponsesRequest,
ResponsesResponse, ResponseUsage)
# yapf: enable
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
from vllm.entrypoints.tool_server import ToolServer
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
from vllm.logger import init_logger
from vllm.outputs import CompletionOutput
from vllm.reasoning import ReasoningParser, ReasoningParserManager
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import random_uuid
logger = init_logger(__name__)
class OpenAIServingResponses(OpenAIServing):
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
models: OpenAIServingModels,
*,
request_logger: Optional[RequestLogger],
chat_template: Optional[str],
chat_template_content_format: ChatTemplateContentFormatOption,
return_tokens_as_token_ids: bool = False,
reasoning_parser: str = "",
enable_auto_tools: bool = False,
tool_parser: Optional[str] = None,
tool_server: Optional[ToolServer] = None,
enable_prompt_tokens_details: bool = False,
enable_force_include_usage: bool = False,
enable_log_outputs: bool = False,
) -> None:
super().__init__(
engine_client=engine_client,
model_config=model_config,
models=models,
request_logger=request_logger,
return_tokens_as_token_ids=return_tokens_as_token_ids,
enable_force_include_usage=enable_force_include_usage,
)
self.chat_template = chat_template
self.chat_template_content_format: Final = chat_template_content_format
self.enable_log_outputs = enable_log_outputs
self.reasoning_parser: Optional[Callable[[AnyTokenizer],
ReasoningParser]] = None
if reasoning_parser:
try:
self.reasoning_parser = (
ReasoningParserManager.get_reasoning_parser(
reasoning_parser))
assert self.reasoning_parser is not None
except Exception as e:
raise TypeError(
f"{reasoning_parser=} has not been registered") from e
self.enable_prompt_tokens_details = enable_prompt_tokens_details
self.enable_force_include_usage = enable_force_include_usage
self.default_sampling_params = (
self.model_config.get_diff_sampling_param())
if self.default_sampling_params:
source = self.model_config.generation_config
source = "model" if source == "auto" else source
logger.info("Using default chat sampling params from %s: %s",
source, self.default_sampling_params)
# If False (default), the "store" option is (silently) ignored and the
# response is not stored. If True, the response is stored in memory.
# NOTE(woosuk): This may not be intuitive for users, as the default
# behavior in OpenAI's Responses API is to store the response, but
# vLLM's default behavior is not.
self.enable_store = envs.VLLM_ENABLE_RESPONSES_API_STORE
if self.enable_store:
logger.warning_once(
"`VLLM_ENABLE_RESPONSES_API_STORE` is enabled. This may "
"cause a memory leak since we never remove responses from "
"the store.")
self.use_harmony = model_config.hf_config.model_type == "gpt_oss"
if self.use_harmony:
logger.warning("For gpt-oss, we ignore --enable-auto-tool-choice "
"and always enable tool use.")
# OpenAI models have two EOS-like tokens: <|return|> and <|call|>.
# We need to add them to the stop token ids.
if "stop_token_ids" not in self.default_sampling_params:
self.default_sampling_params["stop_token_ids"] = []
self.default_sampling_params["stop_token_ids"].extend(
get_stop_tokens_for_assistant_actions())
# set up tool use
self.enable_auto_tools: bool = enable_auto_tools
if self.enable_auto_tools:
logger.info(
"\"auto\" tool choice has been enabled please note that while"
" the parallel_tool_calls client option is preset for "
"compatibility reasons, it will be ignored.")
# HACK(woosuk): This is a hack. We should use a better store.
# FIXME: If enable_store=True, this may cause a memory leak since we
# never remove responses from the store.
self.response_store: dict[str, ResponsesResponse] = {}
self.response_store_lock = asyncio.Lock()
# HACK(woosuk): This is a hack. We should use a better store.
# FIXME: If enable_store=True, this may cause a memory leak since we
# never remove messages from the store.
self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}
self.background_tasks: dict[str, asyncio.Task] = {}
self.tool_server = tool_server
async def create_responses(
self,
request: ResponsesRequest,
raw_request: Optional[Request] = None,
) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
logger.error("Error with model %s", error_check_ret)
return error_check_ret
# If the engine is dead, raise the engine's DEAD_ERROR.
# This is required for the streaming case, where we return a
# success status before we actually start generating text :).
if self.engine_client.errored:
raise self.engine_client.dead_error
if request.store and not self.enable_store:
if request.background:
return self.create_error_response(
err_type="invalid_request_error",
message=(
"This vLLM engine does not support `store=True` and "
"therefore does not support the background mode. To "
"enable these features, set the environment variable "
"`VLLM_ENABLE_RESPONSES_API_STORE=1` when launching "
"the vLLM server."),
status_code=HTTPStatus.BAD_REQUEST,
)
# Disable the store option.
# NOTE(woosuk): Although returning an error is possible, we opted
# to implicitly disable store and process the request anyway, as
# we assume most users do not intend to actually store the response
# (i.e., their request's `store=True` just because it's the default
# value).
request.store = False
# Handle the previous response ID.
prev_response_id = request.previous_response_id
if prev_response_id is not None:
if not prev_response_id.startswith("resp_"):
return self._make_invalid_id_error(prev_response_id)
async with self.response_store_lock:
prev_response = self.response_store.get(prev_response_id)
if prev_response is None:
return self._make_not_found_error(prev_response_id)
else:
prev_response = None
try:
lora_request = self._maybe_get_adapters(request)
model_name = self._get_model_name(request.model, lora_request)
tokenizer = await self.engine_client.get_tokenizer(lora_request)
if self.use_harmony:
messages, request_prompts, engine_prompts = (
self._make_request_with_harmony(request, prev_response))
else:
messages, request_prompts, engine_prompts = (
await self._make_request(request, prev_response,
tokenizer))
except (ValueError, TypeError, RuntimeError, jinja2.TemplateError,
NotImplementedError) as e:
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(f"{e} {e.__cause__}")
request_metadata = RequestResponseMetadata(
request_id=request.request_id)
if raw_request:
raw_request.state.request_metadata = request_metadata
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[ConversationContext, None]] = []
builtin_tool_list: list[str] = []
if self.use_harmony and self.tool_server is not None:
if self.tool_server.has_tool("browser"):
builtin_tool_list.append("browser")
if self.tool_server.has_tool("python"):
builtin_tool_list.append("python")
async with AsyncExitStack() as exit_stack:
try:
if self.tool_server is not None:
# TODO: initialize tool sessions lazily when the session
# is actually used.
tool_session_ctxs: dict[str, Any] = {
tool_name:
exit_stack.enter_async_context(
self.tool_server.new_session(tool_name))
for tool_name in builtin_tool_list
}
tool_sessions = {}
for tool_name in builtin_tool_list:
tool_sessions[tool_name] = (
await tool_session_ctxs[tool_name])
else:
assert len(builtin_tool_list) == 0
tool_sessions = {}
for i, engine_prompt in enumerate(engine_prompts):
default_max_tokens = self.max_model_len - len(
engine_prompt["prompt_token_ids"])
sampling_params = request.to_sampling_params(
default_max_tokens, self.default_sampling_params)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(
raw_request.headers))
context: ConversationContext
if self.use_harmony:
if request.stream:
context = StreamingHarmonyContext(
messages, tool_sessions)
else:
context = HarmonyContext(messages, tool_sessions)
else:
context = SimpleContext()
generator = self._generate_with_builtin_tools(
request_id=request.request_id,
request_prompt=request_prompts[i],
engine_prompt=engine_prompt,
sampling_params=sampling_params,
context=context,
lora_request=lora_request,
priority=request.priority,
trace_headers=trace_headers,
)
generators.append(generator)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
assert len(generators) == 1
result_generator, = generators
# Store the input messages.
if request.store:
self.msg_store[request.request_id] = messages
if request.background:
created_time = int(time.time())
response = ResponsesResponse.from_request(
request,
sampling_params,
model_name=model_name,
created_time=created_time,
output=[],
status="queued",
usage=None,
)
async with self.response_store_lock:
self.response_store[response.id] = response
# Run the request in the background.
task = asyncio.create_task(
self._run_background_request(
request,
sampling_params,
result_generator,
context,
model_name,
tokenizer,
request_metadata,
created_time,
),
name=f"create_{response.id}",
)
# For cleanup.
response_id = response.id
self.background_tasks[response_id] = task
task.add_done_callback(
lambda _: self.background_tasks.pop(response_id, None))
return response
if request.stream:
raise NotImplementedError(
"Streaming responses are not supported")
try:
return await self.responses_full_generator(
request,
sampling_params,
result_generator,
context,
model_name,
tokenizer,
request_metadata,
)
except Exception as e:
return self.create_error_response(str(e))
return self.create_error_response("Should not reach here")
async def _make_request(
self,
request: ResponsesRequest,
prev_response: Optional[ResponsesResponse],
tokenizer: AnyTokenizer,
):
if len(request.tools) > 0:
raise NotImplementedError(
"Tool use is not supported in Responses API without Harmony")
# Construct the input messages.
messages = self._construct_input_messages(request, prev_response)
_, request_prompts, engine_prompts = await self._preprocess_chat(
request,
tokenizer,
messages,
chat_template=self.chat_template,
chat_template_content_format=self.chat_template_content_format,
)
return messages, request_prompts, engine_prompts
def _make_request_with_harmony(
self,
request: ResponsesRequest,
prev_response: Optional[ResponsesResponse],
):
if request.tool_choice != "auto":
raise NotImplementedError(
"Only 'auto' tool_choice is supported in "
"response API with Harmony")
messages = self._construct_input_messages_with_harmony(
request, prev_response)
prompt_token_ids = render_for_completion(messages)
engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids)
return messages, [prompt_token_ids], [engine_prompt]
async def responses_full_generator(
self,
request: ResponsesRequest,
sampling_params: SamplingParams,
result_generator: AsyncIterator[ConversationContext],
context: ConversationContext,
model_name: str,
tokenizer: AnyTokenizer,
request_metadata: RequestResponseMetadata,
created_time: Optional[int] = None,
) -> Union[ErrorResponse, ResponsesResponse]:
if created_time is None:
created_time = int(time.time())
try:
async for _ in result_generator:
pass
except asyncio.CancelledError:
return self.create_error_response("Client disconnected")
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
if self.use_harmony:
assert isinstance(context, HarmonyContext)
output = self._make_response_output_items_with_harmony(context)
# TODO: these are all 0 for now!
num_prompt_tokens = context.num_prompt_tokens
num_generated_tokens = context.num_output_tokens
num_cached_tokens = context.num_cached_tokens
num_reasoning_tokens = context.num_reasoning_tokens
else:
assert isinstance(context, SimpleContext)
final_res = context.last_output
assert final_res is not None
assert len(final_res.outputs) == 1
final_output = final_res.outputs[0]
output = self._make_response_output_items(request, final_output,
tokenizer)
# Calculate usage.
assert final_res.prompt_token_ids is not None
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = len(final_output.token_ids)
num_cached_tokens = final_res.num_cached_tokens
num_reasoning_tokens = 0
usage = ResponseUsage(
input_tokens=num_prompt_tokens,
output_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
input_tokens_details=InputTokensDetails(
cached_tokens=num_cached_tokens),
output_tokens_details=OutputTokensDetails(
reasoning_tokens=num_reasoning_tokens),
)
response = ResponsesResponse.from_request(
request,
sampling_params,
model_name=model_name,
created_time=created_time,
output=output,
status="completed",
usage=usage,
)
if request.store:
async with self.response_store_lock:
stored_response = self.response_store.get(response.id)
# If the response is already cancelled, don't update it.
if (stored_response is None
or stored_response.status != "cancelled"):
self.response_store[response.id] = response
return response
def _make_response_output_items(
self,
request: ResponsesRequest,
final_output: CompletionOutput,
tokenizer: AnyTokenizer,
) -> list[ResponseOutputItem]:
if self.reasoning_parser:
try:
reasoning_parser = self.reasoning_parser(tokenizer)
except RuntimeError as e:
logger.exception("Error in reasoning parser creation.")
raise e
reasoning_content, content = (
reasoning_parser.extract_reasoning_content(final_output.text,
request=request))
else:
reasoning_content = None
content = final_output.text
# Log complete response if output logging is enabled
if self.enable_log_outputs and self.request_logger:
output_text = ""
if content:
output_text = content
elif reasoning_content:
output_text = f"[reasoning: {reasoning_content}]"
if output_text:
self.request_logger.log_outputs(
request_id=request.request_id,
outputs=output_text,
output_token_ids=final_output.token_ids,
finish_reason=final_output.finish_reason,
is_streaming=False,
delta=False,
)
output = []
if reasoning_content:
reasoning_item = ResponseReasoningItem(
id=f"rs_{random_uuid()}",
summary=[],
type="reasoning",
content=[
ResponseReasoningTextContent(text=reasoning_content,
type="reasoning_text")
],
status=None, # NOTE: Only the last output item has status.
)
output.append(reasoning_item)
if content:
output_text = ResponseOutputText(
text=content,
annotations=[], # TODO
type="output_text",
logprobs=None, # TODO
)
message = ResponseOutputMessage(
id=f"msg_{random_uuid()}",
content=[output_text],
role="assistant",
status="completed",
type="message",
)
output.append(message)
return output
def _make_response_output_items_with_harmony(
self,
context: HarmonyContext,
) -> list[ResponseOutputItem]:
output_items = []
num_init_messages = context.num_init_messages
for msg in context.messages[num_init_messages:]:
output_items.extend(parse_output_message(msg))
# Handle the generation stopped in the middle (if any).
last_items = parse_remaining_state(context.parser)
if last_items:
output_items.extend(last_items)
return output_items
def _construct_input_messages(
self,
request: ResponsesRequest,
prev_response: Optional[ResponsesResponse] = None,
) -> list[ChatCompletionMessageParam]:
messages: list[ChatCompletionMessageParam] = []
if request.instructions:
messages.append({
"role": "system",
"content": request.instructions,
})
# Prepend the conversation history.
if prev_response is not None:
# Add the previous messages.
prev_msg = self.msg_store[prev_response.id]
messages.extend(prev_msg)
# Add the previous output.
for output_item in prev_response.output:
# NOTE: We skip the reasoning output.
if isinstance(output_item, ResponseOutputMessage):
for content in output_item.content:
messages.append({
"role": "assistant",
"content": content.text,
})
# Append the new input.
# Responses API supports simple text inputs without chat format.
if isinstance(request.input, str):
messages.append({"role": "user", "content": request.input})
else:
messages.extend(request.input) # type: ignore
return messages
def _construct_input_messages_with_harmony(
self,
request: ResponsesRequest,
prev_response: Optional[ResponsesResponse],
) -> list[OpenAIHarmonyMessage]:
messages: list[OpenAIHarmonyMessage] = []
if prev_response is None:
# New conversation.
reasoning_effort = (request.reasoning.effort
if request.reasoning else None)
tool_types = [tool.type for tool in request.tools]
enable_browser = ("web_search_preview" in tool_types
and self.tool_server is not None
and self.tool_server.has_tool("browser"))
enable_code_interpreter = ("code_interpreter" in tool_types
and self.tool_server is not None
and self.tool_server.has_tool("python"))
sys_msg = get_system_message(
reasoning_effort=reasoning_effort,
browser_description=self.tool_server.get_tool_description(
"browser")
if enable_browser and self.tool_server is not None else None,
python_description=self.tool_server.get_tool_description(
"python") if enable_code_interpreter
and self.tool_server is not None else None,
)
messages.append(sys_msg)
dev_msg = get_developer_message(request.instructions,
request.tools)
messages.append(dev_msg)
else:
# Continue the previous conversation.
# FIXME(woosuk): Currently, request params like reasoning and
# instructions are ignored.
prev_msgs = self.msg_store[prev_response.id]
# Remove the previous chain-of-thoughts if there is a new "final"
# message. Note that this also removes these messages from the
# msg_store.
if len(prev_msgs) > 0:
last_msg = prev_msgs[-1]
assert isinstance(last_msg, OpenAIHarmonyMessage)
if last_msg.channel == "final":
prev_final_msg_idx = -1
for i in range(len(prev_msgs) - 2, -1, -1):
prev_msg_i = prev_msgs[i]
assert isinstance(prev_msg_i, OpenAIHarmonyMessage)
if prev_msg_i.channel == "final":
prev_final_msg_idx = i
break
recent_turn_msgs = prev_msgs[prev_final_msg_idx + 1:]
del prev_msgs[prev_final_msg_idx + 1:]
for msg in recent_turn_msgs:
assert isinstance(msg, OpenAIHarmonyMessage)
if msg.channel != "analysis":
prev_msgs.append(msg)
messages.extend(prev_msgs)
# Append the new input.
# Reponses API supports simple text inputs without chat format.
if isinstance(request.input, str):
messages.append(get_user_message(request.input))
else:
if prev_response is not None:
prev_outputs = copy(prev_response.output)
else:
prev_outputs = []
for response_msg in request.input:
messages.append(
parse_response_input(response_msg, prev_outputs))
# User passes in a a tool call request and its output. We need
# to add the tool call request to prev_outputs so that the
# parse_response_input can find the tool call request when
# parsing the tool call output.
if isinstance(response_msg, ResponseFunctionToolCall):
prev_outputs.append(response_msg)
return messages
async def _run_background_request(
self,
request: ResponsesRequest,
*args,
**kwargs,
):
try:
response = await self.responses_full_generator(
request, *args, **kwargs)
except Exception as e:
logger.exception("Background request failed for %s",
request.request_id)
response = self.create_error_response(str(e))
if isinstance(response, ErrorResponse):
# If the request has failed, update the status to "failed".
response_id = request.request_id
async with self.response_store_lock:
stored_response = self.response_store.get(response_id)
assert stored_response is not None
if stored_response.status not in ("completed", "cancelled"):
stored_response.status = "failed"
async def retrieve_responses(
self,
response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
if not response_id.startswith("resp_"):
return self._make_invalid_id_error(response_id)
async with self.response_store_lock:
response = self.response_store.get(response_id)
if response is None:
return self._make_not_found_error(response_id)
return response
async def cancel_responses(
self,
response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
if not response_id.startswith("resp_"):
return self._make_invalid_id_error(response_id)
async with self.response_store_lock:
response = self.response_store.get(response_id)
if response is None:
return self._make_not_found_error(response_id)
prev_status = response.status
if prev_status not in ("queued", "in_progress"):
return self.create_error_response(
err_type="invalid_request_error",
message="Cannot cancel a synchronous response.",
)
# Update the status to "cancelled".
response.status = "cancelled"
# Abort the request.
if (task := self.background_tasks.get(response_id)):
task.cancel()
try:
await task
except asyncio.CancelledError:
logger.exception("Background task for %s was cancelled",
response_id)
return response
def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
return self.create_error_response(
err_type="invalid_request_error",
message=(f"Invalid 'response_id': '{response_id}'. "
"Expected an ID that begins with 'resp'."),
)
def _make_not_found_error(self, response_id: str) -> ErrorResponse:
return self.create_error_response(
err_type="invalid_request_error",
message=f"Response with id '{response_id}' not found.",
status_code=HTTPStatus.NOT_FOUND,
)
def _make_store_not_supported_error(self) -> ErrorResponse:
return self.create_error_response(
err_type="invalid_request_error",
message=("`store=True` (default) is not supported. Please set "
"`store=False` in Responses API or set "
"`VLLM_ENABLE_RESPONSES_API_STORE=1` in the env var when "
"starting the vLLM server."),
status_code=HTTPStatus.BAD_REQUEST,
)