vllm/vllm/model_executor/models/fairseq2_llama.py
Simon Mo 02f0c7b220
[Misc] Add SPDX-FileCopyrightText (#19100)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-06-03 11:20:17 -07:00

155 lines
6.4 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2024 The vLLM team.
# Copyright 2024 Meta Platforms, Inc. and affiliates. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Llama model for fairseq2 weights."""
from collections.abc import Iterable
import torch
from torch.nn import Parameter
from vllm.config import VllmConfig
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.linear import set_weight_attrs
from vllm.model_executor.models.llama import LlamaForCausalLM
from .utils import AutoWeightsLoader, WeightsMapper
class Fairseq2LlamaForCausalLM(LlamaForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
self.tp_rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
# For the model loader to read only the relevant checkpoint files
self.allow_patterns_overrides = [
# either the full checkpoint
"model.pt",
# or the tp-sharded checkpoint of the current rank
f"model.{self.tp_rank}.pt",
]
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
# fairseq2's serialization adds a wrapper to usual .pt state_dict's:
# { "model_key": my_model_name, "my_model_name": state_dict }
# which we first need to unpack
weights_wrapped = dict(weights)
weights = weights_wrapped[
weights_wrapped["model_key"]].items() # type: ignore
# remap keys
fs2_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"decoder_frontend.embed.": "model.embed_tokens.",
"decoder.": "model.",
"final_proj.": "lm_head.",
},
orig_to_new_substr={
".self_attn_layer_norm.": ".input_layernorm.",
".ffn_layer_norm.": ".post_attention_layernorm.",
".self_attn.output_proj.": ".self_attn.o_proj.",
".ffn.gate_proj.": ".mlp.gate_proj.",
".ffn.inner_proj.": ".mlp.up_proj.",
".ffn.output_proj.": ".mlp.down_proj.",
".layer_norm.": ".norm.",
},
)
weights = fs2_to_vllm_mapper.apply(weights)
params = dict(self.named_parameters())
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(
(self.reshape_fairseq2_weights(name, loaded_weight, params)
for name, loaded_weight in weights))
def flag_sharded_weights(self, params: dict[str, Parameter]):
"""Sets the `is_sharded_weight` flag to True for all sharded weights"""
for name, param in params.items():
modules = name.split(".")
if "norm" in name and len(param.size()) < 2:
# layer norms are not sharded
continue
elif any(emb in modules for emb in ["embed_tokens", "lm_head"]):
# for now we repeat embedding layers for compatibility
continue
else:
# all other layers are sharded
set_weight_attrs(param, {"is_sharded_weight": True})
def reshape_fairseq2_weights(
self,
name: str,
loaded_weight: torch.Tensor,
params: dict[str, Parameter],
) -> tuple[str, torch.Tensor]:
"""Reshape fairseq2's weights."""
def permute(w: torch.Tensor, n_heads: int) -> torch.Tensor:
attn_in = self.config.head_dim * n_heads
# check for a sharded weight on dim 0
if attn_in // self.tp_size == w.size()[0]:
attn_in //= self.tp_size
n_heads //= self.tp_size
attn_out = self.config.hidden_size
return (w.view(n_heads, attn_in // n_heads // 2, 2,
attn_out).transpose(1,
2).reshape(attn_in, attn_out))
modules = name.split(".")
# rotary embeds should be sliced
if "k_proj" in modules:
loaded_weight = permute(loaded_weight,
self.config.num_key_value_heads)
elif "q_proj" in modules:
loaded_weight = permute(loaded_weight,
self.config.num_attention_heads)
# We make the loaded weights compatible with both
# full checkpoints and tp sharded checkpoints.
# Embeddings are repeated to fit the vocab size.
# Other weights are flagged for the weight_loader calls.
if any(emb in modules for emb in ["embed_tokens", "lm_head"]):
# Embeddings are sharded on dim 0
dim = 0
# In fairseq2, vocab size has to be divisible by tp_size
# so we don't worry about padding
if self.tp_size > 1 and loaded_weight.shape[
dim] < self.config.vocab_size:
assert loaded_weight.shape[
dim] * self.tp_size == self.config.vocab_size, \
"vocab_size should be divisible by tp_size."
repeats = [1] * len(loaded_weight.size())
repeats[dim] = self.tp_size
# repeat to match vocab size and to be easily 'narrow'able
loaded_weight = loaded_weight.repeat(repeats)
set_weight_attrs(params[name], {"is_sharded_weight": False})
# if embeddings are sharded, the rest is too
if "embed_tokens" in modules:
self.flag_sharded_weights(params)
return name, loaded_weight