mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-17 07:24:29 +08:00
155 lines
6.4 KiB
Python
155 lines
6.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||
|
||
# Copyright 2024 The vLLM team.
|
||
# Copyright 2024 Meta Platforms, Inc. and affiliates. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""Llama model for fairseq2 weights."""
|
||
|
||
from collections.abc import Iterable
|
||
|
||
import torch
|
||
from torch.nn import Parameter
|
||
|
||
from vllm.config import VllmConfig
|
||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
||
get_tensor_model_parallel_world_size)
|
||
from vllm.model_executor.layers.linear import set_weight_attrs
|
||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||
|
||
from .utils import AutoWeightsLoader, WeightsMapper
|
||
|
||
|
||
class Fairseq2LlamaForCausalLM(LlamaForCausalLM):
|
||
|
||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||
self.tp_rank = get_tensor_model_parallel_rank()
|
||
self.tp_size = get_tensor_model_parallel_world_size()
|
||
# For the model loader to read only the relevant checkpoint files
|
||
self.allow_patterns_overrides = [
|
||
# either the full checkpoint
|
||
"model.pt",
|
||
# or the tp-sharded checkpoint of the current rank
|
||
f"model.{self.tp_rank}.pt",
|
||
]
|
||
|
||
def load_weights(self, weights: Iterable[tuple[str,
|
||
torch.Tensor]]) -> set[str]:
|
||
# fairseq2's serialization adds a wrapper to usual .pt state_dict's:
|
||
# { "model_key": my_model_name, "my_model_name": state_dict }
|
||
# which we first need to unpack
|
||
weights_wrapped = dict(weights)
|
||
weights = weights_wrapped[
|
||
weights_wrapped["model_key"]].items() # type: ignore
|
||
|
||
# remap keys
|
||
fs2_to_vllm_mapper = WeightsMapper(
|
||
orig_to_new_prefix={
|
||
"decoder_frontend.embed.": "model.embed_tokens.",
|
||
"decoder.": "model.",
|
||
"final_proj.": "lm_head.",
|
||
},
|
||
orig_to_new_substr={
|
||
".self_attn_layer_norm.": ".input_layernorm.",
|
||
".ffn_layer_norm.": ".post_attention_layernorm.",
|
||
".self_attn.output_proj.": ".self_attn.o_proj.",
|
||
".ffn.gate_proj.": ".mlp.gate_proj.",
|
||
".ffn.inner_proj.": ".mlp.up_proj.",
|
||
".ffn.output_proj.": ".mlp.down_proj.",
|
||
".layer_norm.": ".norm.",
|
||
},
|
||
)
|
||
weights = fs2_to_vllm_mapper.apply(weights)
|
||
|
||
params = dict(self.named_parameters())
|
||
|
||
loader = AutoWeightsLoader(
|
||
self,
|
||
skip_prefixes=(["lm_head."]
|
||
if self.config.tie_word_embeddings else None),
|
||
)
|
||
return loader.load_weights(
|
||
(self.reshape_fairseq2_weights(name, loaded_weight, params)
|
||
for name, loaded_weight in weights))
|
||
|
||
def flag_sharded_weights(self, params: dict[str, Parameter]):
|
||
"""Sets the `is_sharded_weight` flag to True for all sharded weights"""
|
||
for name, param in params.items():
|
||
modules = name.split(".")
|
||
if "norm" in name and len(param.size()) < 2:
|
||
# layer norms are not sharded
|
||
continue
|
||
elif any(emb in modules for emb in ["embed_tokens", "lm_head"]):
|
||
# for now we repeat embedding layers for compatibility
|
||
continue
|
||
else:
|
||
# all other layers are sharded
|
||
set_weight_attrs(param, {"is_sharded_weight": True})
|
||
|
||
def reshape_fairseq2_weights(
|
||
self,
|
||
name: str,
|
||
loaded_weight: torch.Tensor,
|
||
params: dict[str, Parameter],
|
||
) -> tuple[str, torch.Tensor]:
|
||
"""Reshape fairseq2's weights."""
|
||
|
||
def permute(w: torch.Tensor, n_heads: int) -> torch.Tensor:
|
||
attn_in = self.config.head_dim * n_heads
|
||
# check for a sharded weight on dim 0
|
||
if attn_in // self.tp_size == w.size()[0]:
|
||
attn_in //= self.tp_size
|
||
n_heads //= self.tp_size
|
||
attn_out = self.config.hidden_size
|
||
return (w.view(n_heads, attn_in // n_heads // 2, 2,
|
||
attn_out).transpose(1,
|
||
2).reshape(attn_in, attn_out))
|
||
|
||
modules = name.split(".")
|
||
|
||
# rotary embeds should be sliced
|
||
if "k_proj" in modules:
|
||
loaded_weight = permute(loaded_weight,
|
||
self.config.num_key_value_heads)
|
||
|
||
elif "q_proj" in modules:
|
||
loaded_weight = permute(loaded_weight,
|
||
self.config.num_attention_heads)
|
||
|
||
# We make the loaded weights compatible with both
|
||
# full checkpoints and tp sharded checkpoints.
|
||
# Embeddings are repeated to fit the vocab size.
|
||
# Other weights are flagged for the weight_loader calls.
|
||
if any(emb in modules for emb in ["embed_tokens", "lm_head"]):
|
||
# Embeddings are sharded on dim 0
|
||
dim = 0
|
||
# In fairseq2, vocab size has to be divisible by tp_size
|
||
# so we don't worry about padding
|
||
if self.tp_size > 1 and loaded_weight.shape[
|
||
dim] < self.config.vocab_size:
|
||
assert loaded_weight.shape[
|
||
dim] * self.tp_size == self.config.vocab_size, \
|
||
"vocab_size should be divisible by tp_size."
|
||
repeats = [1] * len(loaded_weight.size())
|
||
repeats[dim] = self.tp_size
|
||
# repeat to match vocab size and to be easily 'narrow'able
|
||
loaded_weight = loaded_weight.repeat(repeats)
|
||
set_weight_attrs(params[name], {"is_sharded_weight": False})
|
||
# if embeddings are sharded, the rest is too
|
||
if "embed_tokens" in modules:
|
||
self.flag_sharded_weights(params)
|
||
|
||
return name, loaded_weight
|