vllm/vllm/profiler/layerwise_profile.py
Harry Mellor ff334ca1cd
Update deprecated type hinting in vllm/profiler (#18057)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 04:34:34 -07:00

375 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import copy
from collections import defaultdict
from dataclasses import asdict, dataclass, field
from typing import Any, Callable, Optional, TypeAlias, Union
import pandas as pd
from torch._C._autograd import DeviceType, _KinetoEvent, _ProfilerResult
from torch._C._profiler import _EventType, _ExperimentalConfig, _ProfilerEvent
from torch.autograd.profiler import FunctionEvent
from torch.profiler import ProfilerActivity, profile
from vllm.profiler.utils import (TablePrinter, event_has_module,
event_is_torch_op, event_module_repr,
event_torch_op_stack_trace, indent_string)
@dataclass
class _ModuleTreeNode:
event: _ProfilerEvent
parent: Optional['_ModuleTreeNode'] = None
children: list['_ModuleTreeNode'] = field(default_factory=list)
trace: str = ""
@property
def is_leaf(self):
return (self.event.children is None or len(self.event.children) == 0)
@property
def is_torch_op(self):
return event_is_torch_op(self.event)
@property
def is_cuda(self):
return (self.event.tag == _EventType.Kineto
and self.event.typed[1].device_type == DeviceType.CUDA)
@dataclass
class SummaryStatsEntry:
name: str
cuda_time_us: float
pct_cuda_time: float
invocations: int
@dataclass
class ModelStatsEntry:
name: str
cpu_time_us: float
cuda_time_us: float
pct_cuda_time: float
trace: str
StatsEntry: TypeAlias = Union[ModelStatsEntry, SummaryStatsEntry]
@dataclass
class _StatsTreeNode:
entry: StatsEntry
children: list[StatsEntry]
parent: Optional[StatsEntry]
@dataclass
class LayerwiseProfileResults(profile):
_kineto_results: _ProfilerResult
_kineto_event_correlation_map: dict[int,
list[_KinetoEvent]] = field(init=False)
_event_correlation_map: dict[int, list[FunctionEvent]] = field(init=False)
_module_tree: list[_ModuleTreeNode] = field(init=False)
_model_stats_tree: list[_StatsTreeNode] = field(init=False)
_summary_stats_tree: list[_StatsTreeNode] = field(init=False)
# profile metadata
num_running_seqs: Optional[int] = None
def __post_init__(self):
self._build_correlation_map()
self._build_module_tree()
self._build_stats_trees()
def print_model_table(self, column_widths: dict[str, int] = None):
_column_widths = dict(name=60,
cpu_time_us=12,
cuda_time_us=12,
pct_cuda_time=12,
trace=60)
if column_widths:
_column_widths.update(**column_widths)
filtered_model_table = [
(depth, row)
for depth, row in self._flatten_stats_tree(self._model_stats_tree)
if row.cuda_time_us > 0 or row.cpu_time_us > 0
]
TablePrinter(ModelStatsEntry, _column_widths).print_table(
self._indent_row_names_based_on_depth(
filtered_model_table,
indent_style=lambda indent: "|" + "-" * indent + " "))
def print_summary_table(self, column_widths: dict[str, int] = None):
_column_widths = dict(name=80,
cuda_time_us=12,
pct_cuda_time=12,
invocations=15)
if column_widths:
_column_widths.update(**column_widths)
filtered_summary_table = [(depth, row)
for depth, row in self._flatten_stats_tree(
self._summary_stats_tree)
if row.cuda_time_us > 0]
TablePrinter(SummaryStatsEntry, _column_widths).print_table(
self._indent_row_names_based_on_depth(
filtered_summary_table,
indent_style=lambda indent: "|" + "-" * indent + " "))
def export_model_stats_table_csv(self, filename: str):
df = pd.DataFrame([
asdict(row)
for _, row in self._flatten_stats_tree(self._model_stats_tree)
])
df.to_csv(filename)
def export_summary_stats_table_csv(self, filename: str):
df = pd.DataFrame([
asdict(row)
for _, row in self._flatten_stats_tree(self._summary_stats_tree)
])
df.to_csv(filename)
def convert_stats_to_dict(self) -> dict[str, Any]:
return {
"metadata": {
"num_running_seqs": self.num_running_seqs
},
"summary_stats":
self._convert_stats_tree_to_dict(self._summary_stats_tree),
"model_stats":
self._convert_stats_tree_to_dict(self._model_stats_tree)
}
@staticmethod
def _indent_row_names_based_on_depth(depths_rows: list[tuple[int,
StatsEntry]],
indent_style: Union[Callable[[int],
str],
str] = " "):
indented_rows = []
for depth, row in depths_rows:
if row.cuda_time_us == 0:
continue
indented_row = copy.deepcopy(row)
indented_row.name = indent_string(indented_row.name, depth,
indent_style)
indented_rows.append(indented_row)
return indented_rows
def _build_correlation_map(self):
self._kineto_event_correlation_map = defaultdict(list)
for event in self._kineto_results.events():
self._kineto_event_correlation_map[event.correlation_id()].append(
event)
def _build_module_tree(self):
self._module_tree = []
event_tree = self._kineto_results.experimental_event_tree()
def _df_traversal(event: _ProfilerEvent,
curr_node: Optional[_ModuleTreeNode] = None):
# For the tensor parallel case for now only look at task 1
if event.start_tid != 1:
return
if event_has_module(event):
node = _ModuleTreeNode(event=event, parent=curr_node)
if curr_node:
curr_node.children.append(node)
else:
self._module_tree.append(node)
curr_node = node
is_leaf = (event.children is None or len(event.children) == 0)
if is_leaf and curr_node:
node = _ModuleTreeNode(
event=event,
parent=curr_node,
trace=event_torch_op_stack_trace(
event, until=lambda x: event_has_module(x)))
curr_node.children.append(node)
curr_node = node
for child in event.children:
_df_traversal(child, curr_node)
for root in event_tree:
_df_traversal(root)
def _get_kineto_gpu_event(self, node: _ModuleTreeNode):
if node.event.tag != _EventType.Kineto:
return None
correlated_kineto_events = self._kineto_event_correlation_map.get(
node.event.correlation_id, [])
iterator = (x for x in correlated_kineto_events
if x.device_type() == DeviceType.CUDA
and x.name() == node.event.name)
return next(iterator, None)
def _cumulative_cuda_time(self, node: _ModuleTreeNode):
'Return cuda time in microseconds'
def _cumulative_cuda_time_recursive(node: _ModuleTreeNode):
if node.is_leaf and (gpu_kineto_event :=
self._get_kineto_gpu_event(node)):
return gpu_kineto_event.duration_ns() / 1000.0
else:
cumulative_cuda_time = 0
for child in node.children:
cumulative_cuda_time += _cumulative_cuda_time_recursive(
child)
return cumulative_cuda_time
return _cumulative_cuda_time_recursive(node)
def _total_cuda_time(self):
return sum(
[self._cumulative_cuda_time(root) for root in self._module_tree])
def _build_stats_trees(self):
summary_dict: dict[str, _StatsTreeNode] = {}
total_cuda_time = self._total_cuda_time()
def pct_cuda_time(cuda_time_us):
return (cuda_time_us / total_cuda_time) * 100
def build_summary_stats_tree_df(
node: _ModuleTreeNode,
parent: Optional[_StatsTreeNode] = None,
summary_trace: tuple[str] = ()):
if event_has_module(node.event):
name = event_module_repr(node.event)
cuda_time_us = self._cumulative_cuda_time(node)
elif (gpu_kineto_event := self._get_kineto_gpu_event(node)):
name = gpu_kineto_event.name()
cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
else:
return None
summary_trace = summary_trace + (name, )
if summary_trace in summary_dict:
entry = summary_dict[summary_trace].entry
entry.cuda_time_us += cuda_time_us
entry.invocations += 1
entry.pct_cuda_time = pct_cuda_time(entry.cuda_time_us)
else:
new_node = _StatsTreeNode(entry=SummaryStatsEntry(
name=name,
cuda_time_us=cuda_time_us,
pct_cuda_time=pct_cuda_time(cuda_time_us),
invocations=1),
children=[],
parent=parent)
if parent:
parent.children.append(new_node)
summary_dict[summary_trace] = new_node
for child in node.children:
build_summary_stats_tree_df(child, summary_dict[summary_trace],
summary_trace)
return summary_dict[summary_trace]
self._summary_stats_tree = []
for root in self._module_tree:
self._summary_stats_tree.append(build_summary_stats_tree_df(root))
def build_model_stats_tree_df(node: _ModuleTreeNode,
parent: Optional[_StatsTreeNode] = None):
if event_has_module(node.event, ):
name = event_module_repr(node.event)
cuda_time_us = self._cumulative_cuda_time(node)
cpu_time_us = node.event.duration_time_ns / 1000
trace = ""
elif (gpu_kineto_event := self._get_kineto_gpu_event(node)):
name = gpu_kineto_event.name()
cuda_time_us = gpu_kineto_event.duration_ns() / 1000.0
cpu_time_us = 0
trace = node.trace
else:
return None
new_node = _StatsTreeNode(entry=ModelStatsEntry(
name=name,
cpu_time_us=cpu_time_us,
cuda_time_us=cuda_time_us,
pct_cuda_time=pct_cuda_time(cuda_time_us),
trace=trace),
parent=parent,
children=[])
if parent:
parent.children.append(new_node)
for child in node.children:
build_model_stats_tree_df(child, new_node)
return new_node
self._model_stats_tree = []
for root in self._module_tree:
self._model_stats_tree.append(build_model_stats_tree_df(root))
def _flatten_stats_tree(
self, tree: list[_StatsTreeNode]) -> list[tuple[int, StatsEntry]]:
entries: list[tuple[int, StatsEntry]] = []
def df_traversal(node: _StatsTreeNode, depth=0):
entries.append((depth, node.entry))
for child in node.children:
df_traversal(child, depth=depth + 1)
for root in tree:
df_traversal(root)
return entries
def _convert_stats_tree_to_dict(self,
tree: list[_StatsTreeNode]) -> list[dict]:
root_dicts: list[dict] = []
def df_traversal(node: _StatsTreeNode, curr_json_list: list[dict]):
curr_json_list.append({
"entry": asdict(node.entry),
"children": []
})
for child in node.children:
df_traversal(child, curr_json_list[-1]["children"])
for root in tree:
df_traversal(root, root_dicts)
return root_dicts
class layerwise_profile(profile):
def __init__(self, num_running_seqs: Optional[int] = None):
"""
layerwise profile constructor.
Args:
num_running_seqs (Optional[int], optional): When given,
num_running_seqs will be passed to LayerProfileResults for metadata
update. Defaults to None.
"""
super().__init__(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record_shapes=True,
with_stack=True,
with_modules=True,
experimental_config=_ExperimentalConfig(verbose=True))
self.num_running_seqs = num_running_seqs
def __enter__(self):
return super().__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
super().__exit__(exc_type, exc_val, exc_tb)
self.results = LayerwiseProfileResults(
self.profiler.kineto_results,
num_running_seqs=self.num_running_seqs)