sangho.lee 8865da157b
[Bugfix][Multi Modal] Fix incorrect Molmo token processing (#26873)
Signed-off-by: sanghol <sanghol@allenai.org>
2025-10-15 07:13:59 +00:00

1557 lines
51 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
from collections.abc import Iterable, Mapping, Sequence
from dataclasses import dataclass
from functools import cached_property, partial
from itertools import islice
from typing import Annotated
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import BatchFeature, PretrainedConfig, ProcessorMixin, TensorType
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import TextInput
from vllm.attention import Attention
from vllm.attention.layer import MultiHeadAttention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
)
from vllm.model_executor.layers.activation import MulAndSilu, QuickGELU, SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargsItems,
)
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptIndexTargets,
PromptInsertion,
PromptUpdate,
PromptUpdateDetails,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (
MultiModalEmbeddings,
SupportsLoRA,
SupportsMultiModal,
SupportsPP,
SupportsQuant,
)
from .utils import (
AutoWeightsLoader,
WeightsMapper,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
# TODO: hard-coded for now. Consider making it configurable.
VIT_LAYERS = [-2, -9]
NUM_PREFIX_TOKENS = 1
ADDITIONAL_VOCAB_SIZE = 128
IMAGE_PATCH_TOKEN = "<im_patch>"
IM_COL_TOKEN = "<im_col>"
IM_START_TOKEN = "<im_start>"
IM_END_TOKEN = "<im_end>"
POOLING_SIZE = 2
class MolmoImageInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- bnc: Batch size * number of images * number of crops (dynamic)
- np: Number of patches
- tp: Token sequence positions
- pd: Patch dimension
"""
images: Annotated[torch.Tensor, TensorShape("bnc", "np", "pd")]
image_masks: Annotated[torch.Tensor | None, TensorShape("bnc", "np")]
image_input_idx: Annotated[torch.Tensor, TensorShape("bnc", "tp")]
"""An index tensor that maps image features to their corresponding patch tokens."""
num_crops: Annotated[torch.Tensor, TensorShape("bn")]
@dataclass
class VisionBackboneConfig:
image_default_input_size: tuple[int, int] = (336, 336)
image_patch_size: int = 14
image_pos_patch_size: int = 14
image_emb_dim: int = 1024
image_num_heads: int = 16
image_num_key_value_heads: int = 16
image_num_layers: int = 23
image_mlp_dim: int = 4096
image_mlp_activations: str = "quick_gelu"
image_num_pos: int = 577
image_norm_eps: float = 1e-5
def __post_init__(self):
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
@property
def image_num_patch(self):
h, w = self.image_default_input_size
return h // self.image_patch_size, w // self.image_patch_size
class ViTMLP(nn.Module):
"""MLP used in Vision Transformer."""
def __init__(
self,
config: VisionBackboneConfig,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.w1 = ColumnParallelLinear(
config.image_emb_dim,
config.image_mlp_dim,
bias=True,
quant_config=quant_config,
)
# Activation function.
assert config.image_mlp_activations == "quick_gelu"
self.act = QuickGELU()
self.w2 = RowParallelLinear(
config.image_mlp_dim,
config.image_emb_dim,
bias=True,
quant_config=quant_config,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.w1(x)
x = self.act(x)
x, _ = self.w2(x)
return x
class MultiHeadDotProductAttention(nn.Module):
"""Multi-head attention used in Vision Transformer."""
def __init__(
self,
config: VisionBackboneConfig,
use_bias: bool = True,
nlayers: int = 1,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.hidden_size = config.image_emb_dim
self.total_num_heads = config.image_num_heads
tp_size = get_tensor_model_parallel_world_size()
assert self.hidden_size % self.total_num_heads == 0
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.head_dim = self.hidden_size // self.total_num_heads
self.total_num_kv_heads = config.image_num_key_value_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.wq = ColumnParallelLinear(
nlayers * self.hidden_size,
self.total_num_heads * self.head_dim,
bias=use_bias,
quant_config=quant_config,
)
self.wk = ColumnParallelLinear(
nlayers * self.hidden_size,
self.total_num_kv_heads * self.head_dim,
bias=use_bias,
quant_config=quant_config,
)
self.wv = ColumnParallelLinear(
nlayers * self.hidden_size,
self.total_num_kv_heads * self.head_dim,
bias=use_bias,
quant_config=quant_config,
)
self.wo = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=use_bias,
quant_config=quant_config,
)
self.scale = self.head_dim**-0.5
self.attn = MultiHeadAttention(
self.num_heads, self.head_dim, self.scale, num_kv_heads=self.num_kv_heads
)
def forward(
self, inputs_q: torch.Tensor, inputs_kv: torch.Tensor | None = None
) -> torch.Tensor:
if inputs_kv is not None:
inputs_k = inputs_kv
inputs_v = inputs_kv
else:
inputs_k = inputs_q
inputs_v = inputs_q
xq, _ = self.wq(inputs_q)
xk, _ = self.wk(inputs_k)
xv, _ = self.wv(inputs_v)
output = self.attn(xq, xk, xv)
output, _ = self.wo(output)
return output
class ResidualAttentionBlock(nn.Module):
"""Residual attention block used in Vision Transformer."""
def __init__(
self,
config: VisionBackboneConfig,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.attention = MultiHeadDotProductAttention(config, quant_config=quant_config)
self.feed_forward = ViTMLP(config, quant_config)
self.attention_norm = nn.LayerNorm(
config.image_emb_dim,
eps=config.image_norm_eps,
)
self.ffn_norm = nn.LayerNorm(
config.image_emb_dim,
eps=config.image_norm_eps,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attention(self.attention_norm(x))
x = x + self.feed_forward(self.ffn_norm(x))
return x
class BlockCollection(nn.Module):
"""Collection of residual attention blocks used in Vision Transformer."""
def __init__(
self,
config: VisionBackboneConfig,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(config, quant_config)
for _ in range(config.image_num_layers)
]
)
def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
hidden_states = []
for r in self.resblocks:
x = r(x)
hidden_states.append(x)
return hidden_states
def _expand_token(token: torch.Tensor, batch_size: int) -> torch.Tensor:
return token.view(1, 1, -1).expand(batch_size, -1, -1)
class VisionTransformer(nn.Module):
"""Vision Transformer used in Vision Backbone."""
def __init__(
self,
config: VisionBackboneConfig,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
scale = config.image_emb_dim**-0.5
self.patch_num = config.image_num_patch
self.class_embedding = nn.Parameter(torch.randn(config.image_emb_dim) * scale)
self.num_prefix_tokens: int = NUM_PREFIX_TOKENS
self.positional_embedding = nn.Parameter(
torch.randn(config.image_num_pos, config.image_emb_dim) * scale
)
image_patch_size = config.image_patch_size
self.patch_embedding = nn.Linear(
image_patch_size * image_patch_size * 3,
config.image_emb_dim,
bias=False,
)
self.pre_ln = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
self.transformer = BlockCollection(config, quant_config)
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
cls_emb = self.positional_embedding[0:1]
pos_emb = self.positional_embedding[1:]
pos_emb = pos_emb.reshape(
(
int(math.sqrt(pos_emb.shape[0])),
int(math.sqrt(pos_emb.shape[0])),
pos_emb.shape[1],
)
)
(patch_num_0, patch_num_1) = patch_num
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
# from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb,
size=(patch_num_0, patch_num_1),
mode="bicubic",
align_corners=False,
antialias=True,
)
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
def forward(
self, x: torch.Tensor, patch_num: int | None = None
) -> list[torch.Tensor]:
"""
: param x: (batch_size, num_patch, n_pixels)
"""
if patch_num is None:
patch_num = self.patch_num
B, N, D = x.shape
x = self.patch_embedding(x)
# class embeddings and positional embeddings
x = torch.cat(
[_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1
)
x = self.add_pos_emb(x, patch_num)
x = self.pre_ln(x)
hidden_states = self.transformer(x)
return hidden_states
class MolmoAttention(nn.Module):
"""Molmo's LLM attention."""
def __init__(
self,
config: PretrainedConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.hidden_size % self.total_num_heads == 0
assert self.total_num_heads % self.tp_size == 0
self.num_heads = self.total_num_heads // self.tp_size
self.total_num_kv_heads = config.num_key_value_heads or self.total_num_heads
if self.total_num_kv_heads >= self.tp_size:
assert self.total_num_kv_heads % self.tp_size == 0
else:
assert self.tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
# Attention input projection. Projects x -> (q, k, v)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=config.qkv_bias,
quant_config=quant_config,
)
self.tp_rank: int | None = None
self.k_norm: nn.Module | None = None
self.q_norm: nn.Module | None = None
if config.attention_layer_norm:
self.tp_rank = get_tensor_model_parallel_rank()
self.k_norm = RMSNorm(
self.total_num_kv_heads * self.head_dim, eps=config.layer_norm_eps
)
self.q_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
# Rotary embeddings.
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
)
self.scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
# Attention output projection.
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
)
def _apply_qk_norm(
self, q: torch.Tensor, k: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
if self.tp_size > 1:
q = tensor_model_parallel_all_gather(q.contiguous())
k = tensor_model_parallel_all_gather(k.contiguous())
q = self.q_norm(q)
k = self.k_norm(k)
if self.tp_size > 1:
splitter = partial(split_tensor_along_last_dim, num_partitions=self.tp_size)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.q_norm is not None and self.k_norm is not None:
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class LanguageModelMLP(nn.Module):
"""Molmo's LLM mlp."""
def __init__(
self,
config: PretrainedConfig,
input_dim: int | None = None,
quant_config: QuantizationConfig | None = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size // 2
self.gate_up_proj = MergedColumnParallelLinear(
input_dim or self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
# Activation function.
self.act_fn = MulAndSilu()
# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class ImageProjectorMLP(nn.Module):
"""Molmo's image_projector mlp."""
def __init__(
self,
config: PretrainedConfig,
input_dim: int | None = None,
quant_config: QuantizationConfig | None = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size // 2
self.merged_linear = MergedColumnParallelLinear(
input_dim or self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
# Activation function.
self.act_fn = SiluAndMul()
# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.merged_linear(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class MolmoDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
# Attention block.
self.self_attn = MolmoAttention(
config, cache_config, quant_config, prefix=f"{prefix}.self_attn"
)
# MLP block.
self.mlp = LanguageModelMLP(config, quant_config=quant_config)
# LayerNorm
assert config.layer_norm_type == "rms"
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.layer_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class MolmoDecoderNormAfterLayer(MolmoDecoderLayer):
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
# Self Attention
residual = hidden_states
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = self.input_layernorm(hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = hidden_states + residual
residual = None
return hidden_states, residual
class MolmoVisionBackbone(nn.Module, SupportsQuant):
packed_modules_mapping = {"merged_linear": ["gate_proj", "up_proj"]}
def __init__(
self,
config: PretrainedConfig,
vision_config: VisionBackboneConfig,
quant_config: QuantizationConfig | None = None,
) -> None:
super().__init__()
self.vit_layers = VIT_LAYERS
self.image_num_patch = vision_config.image_num_patch
self.llm_patches_per_crop = (
(self.image_num_patch[0] + 1) // POOLING_SIZE,
(self.image_num_patch[1] + 1) // POOLING_SIZE,
)
self.image_vit = VisionTransformer(vision_config, quant_config=quant_config)
self.num_prefix_tokens = self.image_vit.num_prefix_tokens
assert self.num_prefix_tokens in {0, 1}, (
"Only 0 or 1 prefix tokens are supported"
)
self.image_pooling_2d = MultiHeadDotProductAttention(
vision_config, nlayers=len(self.vit_layers), quant_config=quant_config
)
self.image_projector = ImageProjectorMLP(
config,
input_dim=vision_config.image_emb_dim,
quant_config=quant_config,
)
image_dim = vision_config.image_emb_dim * len(self.vit_layers)
self.pad_embed = nn.Parameter(torch.zeros((2, image_dim)))
@property
def dtype(self) -> torch.dtype:
return self.image_vit.patch_embedding.weight.dtype
@property
def device(self) -> torch.device:
return self.image_vit.patch_embedding.weight.device
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
"""
: param images: (batch_size, num_crops, num_patch, n_pixels)
"""
B, T, N, D = images.shape
mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
images = images.view(B * T, N, D)
image_features = self.image_vit(images)
if self.vit_layers is not None:
features = []
for layer in self.vit_layers:
features.append(image_features[layer])
image_features = torch.cat(features, dim=-1)
else:
image_features = image_features[-1]
if self.num_prefix_tokens > 0:
image_features = image_features[:, 1:]
image_features = image_features * mask
image_features = image_features.view(B, T, N, -1)
return image_features
def forward(
self,
images: torch.Tensor,
image_masks: torch.Tensor,
) -> torch.Tensor:
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim) # noqa: E501
batch_size, num_image = images.shape[:2]
images = images.to(device=self.device, dtype=self.dtype)
image_features = self.encode_image(images)
og_dtype = image_features.dtype
assert image_masks is not None
pad_embed = self.pad_embed[:, None, None, None, :]
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(
dtype=torch.float32
)
all_pad = all_pad.to(dtype=torch.float32)
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
image_features = image_features + pad_embed[1] * torch.unsqueeze(
partial_pad, -1
)
image_features = image_features.to(og_dtype)
image_features = image_features.reshape(
(batch_size, num_image) + self.image_num_patch + (-1,),
)
if missing_w := self.image_num_patch[0] % POOLING_SIZE:
# Padding for image pooling (see below)
image_features = F.pad(
image_features,
(0, 0, 0, missing_w, 0, missing_w, 0, 0, 0, 0),
)
# image pooling
image_features = rearrange(
image_features,
"b n (h dh) (w dw) c -> (b n h w) (dh dw) c",
dh=POOLING_SIZE,
dw=POOLING_SIZE,
)
query = image_features.mean(-2, keepdim=True)
image_features = self.image_pooling_2d(query, image_features)
h, w = self.llm_patches_per_crop
image_features = image_features.view(batch_size, num_image, h * w, -1)
image_features = self.image_projector(image_features)
# image_features: (batch_size, num_image, num_patch, d_model)
return image_features
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("merged_linear", "gate_proj", 0),
("merged_linear", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
@support_torch_compile
class MolmoModel(nn.Module, SupportsQuant):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.embedding_size = config.embedding_size or config.vocab_size
self.embedding_size += ADDITIONAL_VOCAB_SIZE
self.embed_tokens = VocabParallelEmbedding(
self.embedding_size,
config.hidden_size,
quant_config=quant_config,
)
decoder_layer = (
MolmoDecoderNormAfterLayer if config.norm_after else MolmoDecoderLayer
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: decoder_layer(
config, cache_config, quant_config, prefix=prefix
),
prefix=f"{prefix}.layers",
)
assert config.layer_norm_type == "rms"
self.norm = RMSNorm(config.hidden_size, config.layer_norm_eps)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_tokens(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
# Apply blocks one-by-one.
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
if residual is not None:
hidden_states, _ = self.norm(hidden_states, residual)
else:
hidden_states = self.norm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
def _lowest_multiple(x: int, k: int) -> int:
return (x // k) * k
def get_num_patches(
num_tiles: int,
*,
crop_patches: int,
left_margin: int,
right_margin: int,
pooling_size: int,
) -> int:
if num_tiles == 1:
return _lowest_multiple(crop_patches + pooling_size - 1, pooling_size)
crop_window_patches = crop_patches - (left_margin + right_margin)
left_num = _lowest_multiple(
crop_window_patches + left_margin + pooling_size - 1,
pooling_size,
)
middle_num = _lowest_multiple(
crop_window_patches + pooling_size - 1,
pooling_size,
)
right_num = _lowest_multiple(
crop_window_patches + right_margin + pooling_size - 1,
pooling_size,
)
return left_num + (num_tiles - 2) * middle_num + right_num
def get_patches_grid_size(
*,
tiling_h: int,
tiling_w: int,
crop_patches: int,
left_margin: int,
right_margin: int,
pooling_size: int,
) -> tuple[int, int]:
nrows = get_num_patches(
tiling_h,
crop_patches=crop_patches,
left_margin=left_margin,
right_margin=right_margin,
pooling_size=pooling_size,
)
ncols = get_num_patches(
tiling_w,
crop_patches=crop_patches,
left_margin=left_margin,
right_margin=right_margin,
pooling_size=pooling_size,
)
return nrows, ncols
def get_candidate_tilings(max_num: int) -> list[tuple[int, int]]:
tilings = [
(i, j)
for i in range(1, max_num + 1)
for j in range(1, max_num + 1)
if i * j <= max_num
]
return sorted(tilings, key=lambda x: x[0] * x[1])
def select_tiling(
*,
height: int,
width: int,
patch_size: int,
max_num_patches: int,
):
tilings = get_candidate_tilings(max_num_patches)
candidate_tilings = np.array(tilings, dtype=np.int32)
candidate_resolutions = candidate_tilings * patch_size
original_size = np.array([height, width], dtype=np.float32)
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
required_scale = required_scale_d.min(axis=-1, keepdims=True)
if (required_scale < 1).all():
ix = required_scale.argmax()
else:
ix = np.where(required_scale < 1.0, 10e9, required_scale).argmin()
return candidate_tilings[ix]
class MolmoProcessorWrapper:
"""
Wraps `MolmoProcessor` so that it can be called directly.
The original definition can be found here:
https://huggingface.co/allenai/Molmo-7B-D-0924/blob/main/preprocessing_molmo.py
"""
def __init__(self, processor: ProcessorMixin):
super().__init__()
self.processor = processor
@cached_property
def vocab(self) -> dict[str, int]:
return self.processor.tokenizer.vocab # type: ignore
@cached_property
def max_crops(self) -> int:
image_processor = self.processor.image_processor # type: ignore
max_crops = image_processor.max_crops
assert isinstance(max_crops, int)
return max_crops
@cached_property
def base_image_input_size(self) -> tuple[int, int]:
image_processor = self.processor.image_processor # type: ignore
base_image_input_size = image_processor.base_image_input_size
if isinstance(base_image_input_size, int):
return base_image_input_size, base_image_input_size
return tuple(base_image_input_size)
@cached_property
def image_patch_size(self) -> int:
image_processor = self.processor.image_processor # type: ignore
image_patch_size = image_processor.image_patch_size
assert isinstance(image_patch_size, int)
return image_patch_size
@cached_property
def overlap_margins(self) -> tuple[int, int]:
image_processor = self.processor.image_processor # type: ignore
left_margin, right_margin = image_processor.overlap_margins
assert isinstance(left_margin, int)
assert isinstance(right_margin, int)
return left_margin, right_margin
@cached_property
def image_token_length_w(self) -> int:
image_processor = self.processor.image_processor # type: ignore
image_token_length_w = image_processor.image_token_length_w
assert isinstance(image_token_length_w, int)
return image_token_length_w
@cached_property
def image_token_length_h(self) -> int:
image_processor = self.processor.image_processor # type: ignore
image_token_length_h = image_processor.image_token_length_h
assert isinstance(image_token_length_h, int)
return image_token_length_h
@property
def message_format(self) -> str | None:
return "role"
@property
def always_start_with_space(self) -> bool:
return True
@cached_property
def image_patch_id(self) -> int:
return self.vocab[IMAGE_PATCH_TOKEN]
@cached_property
def im_col_id(self) -> int:
return self.vocab[IM_COL_TOKEN]
@cached_property
def im_start_id(self) -> int:
return self.vocab[IM_START_TOKEN]
@cached_property
def im_end_id(self) -> int:
return self.vocab[IM_END_TOKEN]
@property
def pooling_size(self) -> int:
return POOLING_SIZE
def select_tiling(
self,
*,
image_width: int,
image_height: int,
) -> tuple[int, int]:
max_crops = self.max_crops
left_margin, right_margin = self.overlap_margins
base_image_input_size = self.base_image_input_size
base_image_input_d = self.image_patch_size
total_margin_pixels = base_image_input_d * (right_margin + left_margin)
crop_patches = base_image_input_size[0] // base_image_input_d
crop_window_patches = crop_patches - (right_margin + left_margin)
crop_window_size = crop_window_patches * base_image_input_d
tiling_h, tiling_w = select_tiling(
height=image_height - total_margin_pixels,
width=image_width - total_margin_pixels,
patch_size=crop_window_size,
max_num_patches=max_crops,
)
return tiling_w, tiling_h
def get_patches_grid_size(
self,
*,
image_width: int,
image_height: int,
) -> tuple[int, int]:
left_margin, right_margin = self.overlap_margins
base_image_input_size = self.base_image_input_size
base_image_input_d = self.image_patch_size
pooling_size = self.pooling_size
crop_patches = base_image_input_size[0] // base_image_input_d
tiling_w, tiling_h = self.select_tiling(
image_height=image_height,
image_width=image_width,
)
nrows, ncols = get_patches_grid_size(
tiling_h=tiling_h,
tiling_w=tiling_w,
crop_patches=crop_patches,
left_margin=left_margin,
right_margin=right_margin,
pooling_size=pooling_size,
)
return ncols, nrows
def __call__(
self,
text: TextInput | list[TextInput] | None = None,
images: ImageInput | list[ImageInput] | None = None,
return_tensors: str | TensorType | None = None,
**kwargs,
) -> BatchFeature:
outputs = self.processor.process( # type: ignore
text, images, **kwargs
)
if images is None:
images = []
if not isinstance(images, list):
images = [images]
input_ids: torch.Tensor = outputs.pop("input_ids")
outputs["input_ids"] = input_ids.unsqueeze(0)
image_input_idx = outputs.pop("image_input_idx", None)
if image_input_idx is not None:
feat_is_patch = image_input_idx >= 0
tilings = [
self.select_tiling(
image_width=image.size[0],
image_height=image.size[1],
)
for image in images
]
# For each image: tiling_h * tiling_w + extra
num_crops = torch.tensor(tilings).prod(-1) + 1
assert num_crops.sum() == len(feat_is_patch)
outputs["image_input_idx"] = image_input_idx
outputs["num_crops"] = num_crops
outputs["img_patch_id"] = self.image_patch_id
return BatchFeature(outputs)
class MolmoProcessingInfo(BaseProcessingInfo):
def get_hf_processor(self, **kwargs: object) -> MolmoProcessorWrapper:
processor = self.ctx.get_hf_processor(**kwargs)
return MolmoProcessorWrapper(processor)
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None}
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
processor: MolmoProcessorWrapper | None,
) -> int:
if processor is None:
processor = self.get_hf_processor()
ncols, nrows = processor.get_patches_grid_size(
image_width=image_width,
image_height=image_height,
)
pooling_size = processor.pooling_size
image_token_length_w = processor.image_token_length_w
image_token_length_h = processor.image_token_length_h
# Calculate total tokens: 2 for start/end + (w+1)*h for column separators
extra = 2 + (image_token_length_w + 1) * image_token_length_h
joint = 2 + ((ncols + 1) // pooling_size + 1) * ((nrows + 1) // pooling_size)
return extra + joint
def get_image_size_with_most_features(self) -> ImageSize:
processor = self.get_hf_processor()
tilings = get_candidate_tilings(processor.max_crops)
base_h, base_w = processor.base_image_input_size
largest_feature_size, largest_feature_pinpoint = 0, None
for wr, hr in tilings:
width, height = base_w * wr, base_h * hr
feat_size = self.get_num_image_tokens(
image_width=width,
image_height=height,
processor=processor,
)
if feat_size > largest_feature_size:
largest_feature_size = feat_size
largest_feature_pinpoint = ImageSize(width=width, height=height)
if largest_feature_size == 0 or largest_feature_pinpoint is None:
raise ValueError("Cannot have a largest feature size of 0!")
return largest_feature_pinpoint
class MolmoDummyInputsBuilder(BaseDummyInputsBuilder[MolmoProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
target_width, target_height = self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
)
}
class MolmoMultiModalProcessor(BaseMultiModalProcessor[MolmoProcessingInfo]):
def _apply_hf_processor_tokens_only(
self,
prompt_tokens: list[int],
) -> list[int]:
processor = self.info.get_hf_processor()
# The chat template is already applied to the prompt tokens
# Use message_format="none" to avoid applying it again
# Prepend an empty space if `always_start_with_space` is True
tokens = processor.processor.get_tokens_input( # type: ignore
self.info.get_tokenizer().decode(prompt_tokens),
message_format="none",
always_start_with_space=processor.always_start_with_space,
)
# Prepend a BOS token id to the tokens
processed_data = self.info.ctx.call_hf_processor(
processor, # type: ignore
dict(tokens=tokens),
)
(prompt_ids,) = processed_data.pop("input_ids").tolist()
return prompt_ids
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_crops = hf_inputs.get("num_crops", torch.empty(0))
num_images = len(num_crops)
return dict(
images=MultiModalFieldConfig.flat_from_sizes("image", num_crops),
image_masks=MultiModalFieldConfig.flat_from_sizes("image", num_crops),
image_input_idx=MultiModalFieldConfig.flat_from_sizes("image", num_crops),
num_crops=MultiModalFieldConfig.batched("image"),
img_patch_id=MultiModalFieldConfig.shared("image", num_images),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token_length_w = processor.image_token_length_w
image_token_length_h = processor.image_token_length_h
pooling_size = processor.pooling_size
img_patch_id = processor.image_patch_id
img_col_id = processor.im_col_id
img_start_id = processor.im_start_id
img_end_id = processor.im_end_id
extra_row = [img_patch_id] * image_token_length_w + [img_col_id]
extra_joint = [img_start_id] + extra_row * image_token_length_h + [img_end_id]
def get_insertion_molmo(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = processor.get_patches_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
joint_row = [img_patch_id] * ((ncols + 1) // pooling_size) + [img_col_id]
joint = (
[img_start_id]
+ joint_row * ((nrows + 1) // pooling_size)
+ [img_end_id]
)
return PromptUpdateDetails.select_token_id(
extra_joint + joint,
embed_token_id=img_patch_id,
)
return [
PromptInsertion(
modality="image",
target=PromptIndexTargets.prefix("<|endoftext|>"),
insertion=get_insertion_molmo,
)
]
@MULTIMODAL_REGISTRY.register_processor(
MolmoMultiModalProcessor,
info=MolmoProcessingInfo,
dummy_inputs=MolmoDummyInputsBuilder,
)
class MolmoForCausalLM(
nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA, SupportsQuant
):
merge_by_field_config = True
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
# vision backbone mapping
"image_projector.w1.": "image_projector.gate_proj.",
"image_projector.w3.": "image_projector.up_proj.",
"image_projector.w2.": "image_projector.down_proj.",
# language backbone mapping
"att_proj": "self_attn.qkv_proj",
"attn_out": "self_attn.o_proj",
"q_norm": "self_attn.q_norm",
"k_norm": "self_attn.k_norm",
"ff_proj": "mlp.gate_up_proj",
"ff_out": "mlp.down_proj",
"attn_norm": "input_layernorm",
"ff_norm": "post_attention_layernorm",
},
orig_to_new_prefix={
# vision backbone mapping
"model.vision_backbone.": "vision_backbone.",
# language backbone mapping
"model.transformer.blocks.": "model.layers.",
"model.transformer.ln_f.": "model.norm.",
# lm_head is renamed to model.transformer.mlp.down_proj firstly,
# we need to run a second renaming for it
"model.transformer.mlp.down_proj.": "lm_head.",
},
)
packed_modules_mapping = {
"qkv_proj": ["qkv_proj"],
"gate_up_proj": ["gate_up_proj"], # language model
"merged_linear": ["gate_proj", "up_proj"], # image_projector
}
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return None
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
lora_config = vllm_config.lora_config
self.config = config
self.multimodal_config = multimodal_config
self.lora_config = lora_config
vision_config = VisionBackboneConfig()
self.vision_backbone = MolmoVisionBackbone(config, vision_config, quant_config)
self.model = MolmoModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.img_patch_id = None
if self.config.weight_tying:
self.lm_head = self.model.transformer.wte
else:
self.lm_head = ParallelLMHead(
config.embedding_size or config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(
config.embedding_size or config.vocab_size
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def _parse_and_validate_image_input(
self,
**kwargs: object,
) -> MolmoImageInputs | None:
images = kwargs.pop("images", None)
image_masks = kwargs.pop("image_masks", None)
image_input_idx = kwargs.pop("image_input_idx", None)
num_crops = kwargs.pop("num_crops", None)
if images is None:
return None
img_patch_id = kwargs.pop("img_patch_id", None)
if isinstance(img_patch_id, torch.Tensor):
img_patch_id = img_patch_id.item()
assert isinstance(img_patch_id, int)
self.img_patch_id = img_patch_id
return MolmoImageInputs(
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
num_crops=num_crops,
)
def _process_image_input(
self,
image_input: MolmoImageInputs,
) -> list[torch.Tensor]:
images = image_input["images"]
image_masks = image_input["image_masks"]
image_input_idx = image_input["image_input_idx"]
num_crops = image_input["num_crops"]
# Call the vision backbone on the whole batch at once
image_features = self.vision_backbone(
images=images.unsqueeze(0),
image_masks=None if image_masks is None else image_masks.unsqueeze(0),
).squeeze(0)
# Only the features corresponding to patch tokens are relevant
# Re-order the features using the image_input_idx tensor
results = []
num_crops_list = num_crops.tolist()
for feats, img_idx in zip(
image_features.split(num_crops_list),
image_input_idx.split(num_crops_list),
):
is_valid = img_idx >= 0
valid_img_idx = img_idx[is_valid]
order = torch.argsort(valid_img_idx)
results.append(feats[is_valid][order])
return results
def get_language_model(self) -> torch.nn.Module:
return self.model
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
return self._process_image_input(image_input)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor:
if intermediate_tensors is not None:
inputs_embeds = None
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
weights = _get_weights_with_merged_embedding(weights)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="model",
connector="vision_backbone.image_projector",
tower_model="vision_backbone",
)
def _get_weights_with_merged_embedding(
weights: Iterable[tuple[str, torch.Tensor]],
) -> Iterable[tuple[str, torch.Tensor]]:
embedding_weights = {}
for name, weight in weights:
if "wte.embedding" in name:
embedding_weights["embedding"] = weight
elif "wte.new_embedding" in name:
embedding_weights["new_embedding"] = weight
else:
yield (name, weight)
# this is compatible with most of quantization,
# because they won't quantize embed_tokens
embedding_weights = torch.cat(
[embedding_weights["embedding"], embedding_weights["new_embedding"]],
dim=0,
)
yield ("model.embed_tokens.weight", embedding_weights)