Jinzhen Lin 1656ad3704
[Kernel][Quantization] add w4a8 support for marlin kernel (#24722)
Signed-off-by: Jinzhen Lin <jinzhen.ljz@antgroup.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin@redhat.com>
2025-11-29 07:19:33 -08:00

851 lines
31 KiB
Plaintext

/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Adapted from https://github.com/IST-DASLab/marlin
*/
#ifndef MARLIN_NAMESPACE_NAME
#define MARLIN_NAMESPACE_NAME marlin
#endif
#include "kernel.h"
#include "core/registration.h"
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
std::is_same<scalar_t, nv_bfloat16>::value, \
"only float16 and bfloat16 is supported");
namespace marlin {
__global__ void MarlinDefault(MARLIN_KERNEL_PARAMS){};
using MarlinFuncPtr = void (*)(MARLIN_KERNEL_PARAMS);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int lda, int block_rows) {}
} // namespace marlin
torch::Tensor gptq_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
vllm::ScalarTypeId const& b_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
TORCH_CHECK_NOT_IMPLEMENTED(false,
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}
#else
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int lda, int block_rows) {
auto start_row = block_rows * blockIdx.x;
int finish_row = start_row + block_rows;
if (finish_row > size_m) {
finish_row = size_m;
}
int cur_block_rows = finish_row - start_row;
int input_row_stride = lda * sizeof(half) / 16;
int output_row_stride = size_k * sizeof(half) / 16;
auto permute_row = [&](int row) {
int iters = size_k / default_threads;
int rest = size_k % default_threads;
int input_offset = row * input_row_stride;
int output_offset = row * output_row_stride;
half const* a_row_half =
reinterpret_cast<half const*>(a_int4_ptr + input_offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + output_offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += default_threads;
}
if (rest) {
if (threadIdx.x < rest) {
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int i = 0; i < cur_block_rows; i++) {
int cur_row = start_row + i;
if (cur_row < size_m) {
permute_row(cur_row);
}
}
}
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256},
{64, 128, 128},
{128, 64, 128}};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256},
{64, 128, 128},
{128, 64, 128}};
typedef struct {
int blocks_per_sm;
thread_config_t tb_cfg;
} exec_config_t;
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = div_ceil(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = div_ceil(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * pipe_stages * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 2;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * pipe_stages;
}
}
int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int tb_m = thread_m_blocks * 16;
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_red_size = tb_m * (tb_n + 8) * 2;
int sh_bias_size = tb_n * 2;
int tmp_size =
(sh_b_size > sh_red_size ? sh_red_size : sh_b_size) + sh_bias_size;
tmp_size = max(max(sh_b_size, sh_red_size), tmp_size);
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
int sh_g_idx_size = has_act_order && !is_k_full ? pipe_stages * tb_k / 4 : 0;
int sh_zp_size = 0;
if (has_zp) {
if (is_zp_float)
sh_zp_size = sh_s_size;
else if (num_bits == 4)
sh_zp_size = sh_s_size / 4;
else if (num_bits == 8)
sh_zp_size = sh_s_size / 2;
}
int total_size =
tmp_size + sh_a_size + sh_s_size + sh_zp_size + sh_g_idx_size;
return total_size;
}
bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float, int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Check that pipeline fits into cache
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size <= max_shared_mem;
}
MarlinFuncPtr get_marlin_kernel(
const vllm::ScalarType a_type, const vllm::ScalarType b_type,
const vllm::ScalarType c_type, const vllm::ScalarType s_type,
int thread_m_blocks, int thread_n_blocks, int thread_k_blocks,
bool m_block_size_8, bool has_act_order, bool has_zp, int group_blocks,
int threads, bool is_zp_float) {
int num_bits = b_type.size_bits();
auto kernel = MarlinDefault;
#include "kernel_selector.h"
return kernel;
}
exec_config_t determine_exec_config(
const vllm::ScalarType& a_type, const vllm::ScalarType& b_type,
const vllm::ScalarType& c_type, const vllm::ScalarType& s_type, int prob_m,
int prob_n, int prob_k, int thread_m_blocks, bool m_block_size_8,
int num_bits, int group_size, bool has_act_order, bool is_k_full,
bool has_zp, bool is_zp_float, int max_shared_mem, int sms) {
exec_config_t exec_cfg = exec_config_t{1, thread_config_t{-1, -1, -1}};
thread_config_t* thread_configs = thread_m_blocks > 1
? large_batch_thread_configs
: small_batch_thread_configs;
int thread_configs_size =
thread_m_blocks > 1
? sizeof(large_batch_thread_configs) / sizeof(thread_config_t)
: sizeof(small_batch_thread_configs) / sizeof(thread_config_t);
for (int i = 0; i < thread_configs_size; i++) {
thread_config_t th_config = thread_configs[i];
if (!is_valid_config(th_config, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp,
is_zp_float, max_shared_mem - 512)) {
continue;
}
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full, has_zp, is_zp_float);
int group_blocks = 0;
if (!has_act_order) {
group_blocks = group_size == -1 ? -1 : group_size / 16;
}
auto kernel =
get_marlin_kernel(a_type, b_type, c_type, s_type, thread_m_blocks,
th_config.thread_n / 16, th_config.thread_k / 16,
m_block_size_8, has_act_order, has_zp, group_blocks,
th_config.num_threads, is_zp_float);
if (kernel == MarlinDefault) continue;
// int m_tiles = div_ceil(prob_m, thread_m_blocks * 16);
// int n_tiles = prob_n / th_config.thread_n;
// int k_tiles = prob_k / th_config.thread_k;
return {1, th_config};
}
return exec_cfg;
}
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
void* a_s, void* b_s, void* g_s, void* zp, void* g_idx,
void* perm, void* a_tmp, int prob_m, int prob_n, int prob_k,
int lda, void* workspace, vllm::ScalarType const& a_type,
vllm::ScalarType const& b_type, vllm::ScalarType const& c_type,
vllm::ScalarType const& s_type, bool has_bias,
bool has_act_order, bool is_k_full, bool has_zp, int num_groups,
int group_size, int dev, cudaStream_t stream, int thread_k_init,
int thread_n_init, int sms, bool use_atomic_add,
bool use_fp32_reduce, bool is_zp_float) {
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
int group_blocks = 0;
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(group_size != -1);
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
} else {
TORCH_CHECK(group_size == 0);
group_blocks = 0;
}
} else {
if (group_size == -1) {
group_blocks = -1;
} else {
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
}
int num_bits = b_type.size_bits();
const int4* A_ptr = (const int4*)A;
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* bias_ptr = (const int4*)b_bias;
const float* a_s_ptr = (const float*)a_s;
const int4* b_s_ptr = (const int4*)b_s;
const uint16_t* g_s_ptr = (const uint16_t*)g_s;
const int4* zp_ptr = (const int4*)zp;
const int* g_idx_ptr = (const int*)g_idx;
const int* perm_ptr = (const int*)perm;
int4* a_tmp_ptr = (int4*)a_tmp;
int* locks = (int*)workspace;
if (has_act_order) {
// Permute A columns
int block_rows = div_ceil(prob_m, sms);
// avoid ">>>" being formatted to "> > >"
// clang-format off
permute_cols_kernel<<<sms, default_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, prob_m, prob_k, lda, block_rows);
// clang-format on
A_ptr = a_tmp_ptr;
lda = prob_k;
// If we have a full K, then we can run the non-act-order version of Marlin
// (since the weight rows are reordered by increasing group ids, and by
// having a full K, we have full original groups)
if (is_k_full) has_act_order = false;
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
int major_capability, minor_capability;
cudaDeviceGetAttribute(&major_capability, cudaDevAttrComputeCapabilityMajor,
dev);
cudaDeviceGetAttribute(&minor_capability, cudaDevAttrComputeCapabilityMinor,
dev);
TORCH_CHECK(major_capability * 10 + minor_capability >= 80,
"marlin kernel only support Ampere or newer GPUs.");
if (a_type == vllm::kFE4M3fn) {
TORCH_CHECK(
major_capability * 10 + minor_capability == 89 ||
major_capability * 10 + minor_capability == 120,
"Marlin W4A8-FP8 only support SM89 or SM120 device (It is slower than "
"Marlin W4A16 on other devices).");
}
int max_par = 16;
if (prob_n <= 4096) max_par = 16 * 8;
int max_shared_mem_new = max_shared_mem;
int rest_m = prob_m;
int max_thread_m_blocks = 4;
while (rest_m) {
int par_count = rest_m / (max_thread_m_blocks * 16);
if (par_count > max_par) par_count = max_par;
int prob_m_split =
par_count > 0 ? (par_count * (max_thread_m_blocks * 16)) : rest_m;
int thread_k = thread_k_init;
int thread_n = thread_n_init;
int thread_m_blocks = min(div_ceil(prob_m_split, 16), max_thread_m_blocks);
int m_block_size_8 = prob_m_split <= 8 && a_type.size_bits() == 16;
// Set thread config
exec_config_t exec_cfg;
thread_config_t thread_tfg;
if (thread_k != -1 && thread_n != -1) {
thread_tfg = thread_config_t{thread_k, thread_n, default_threads};
exec_cfg = exec_config_t{1, thread_tfg};
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
} else {
// Auto config
exec_cfg = determine_exec_config(
a_type, b_type, c_type, s_type, prob_m_split, prob_n, prob_k,
thread_m_blocks, m_block_size_8, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem, sms);
thread_tfg = exec_cfg.tb_cfg;
if (thread_tfg.thread_n != -1) {
if (prob_n / thread_tfg.thread_n *
div_ceil(prob_m_split, thread_m_blocks * 16) * 4 <=
sms) {
if (is_valid_config({128, 64, 128}, thread_m_blocks, prob_m_split,
prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, has_zp, is_zp_float,
max_shared_mem_new)) {
thread_tfg = {128, 64, 128};
exec_cfg = {1, thread_tfg};
}
}
}
if (thread_tfg.thread_k == -1 && max_thread_m_blocks > 1) {
max_thread_m_blocks--;
continue;
}
}
int num_threads = thread_tfg.num_threads;
thread_k = thread_tfg.thread_k;
thread_n = thread_tfg.thread_n;
int blocks = sms * exec_cfg.blocks_per_sm;
if (exec_cfg.blocks_per_sm > 1)
max_shared_mem_new = max_shared_mem / exec_cfg.blocks_per_sm - 1024;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
TORCH_CHECK(
is_valid_config(thread_tfg, thread_m_blocks, prob_m_split, prob_n,
prob_k, num_bits, group_size, has_act_order, is_k_full,
has_zp, is_zp_float, max_shared_mem_new),
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
", thread_k = ", thread_tfg.thread_k,
", thread_n = ", thread_tfg.thread_n,
", num_threads = ", thread_tfg.num_threads, " for MKN = [", prob_m,
", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", prob_m_split = ", prob_m_split, ", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", has_zp = ", has_zp, ", is_zp_float = ", is_zp_float,
", max_shared_mem_new = ", max_shared_mem_new);
auto kernel = get_marlin_kernel(
a_type, b_type, c_type, s_type, thread_m_blocks, thread_n_blocks,
thread_k_blocks, m_block_size_8, has_act_order, has_zp, group_blocks,
num_threads, is_zp_float);
if (kernel == MarlinDefault) {
TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
", ", prob_k, "]", ", has_act_order = ", has_act_order,
", num_groups = ", num_groups, ", group_size = ", group_size,
", prob_m_split = ", prob_m_split,
", thread_m_blocks = ", thread_m_blocks,
", thread_n_blocks = ", thread_n_blocks,
", thread_k_blocks = ", thread_k_blocks,
", num_threads = ", num_threads, ", num_bits = ", num_bits);
}
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
max_shared_mem_new);
bool part_use_atomic_add =
use_atomic_add && div_ceil(prob_m_split, 64) * prob_n <= 2048;
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem_new, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, bias_ptr, a_s_ptr, b_s_ptr, g_s_ptr, zp_ptr,
g_idx_ptr, num_groups,
prob_m_split, prob_n, prob_k, lda, locks, has_bias, part_use_atomic_add,
use_fp32_reduce, max_shared_mem_new);
// clang-format on
bool is_a_8bit = a_type.size_bits() == 8;
A_ptr += prob_m_split * (lda / (is_a_8bit ? 16 : 8));
a_s_ptr += prob_m_split;
C_ptr += prob_m_split * (prob_n / 8);
rest_m -= prob_m_split;
}
}
} // namespace marlin
torch::Tensor gptq_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& a_scales_or_none,
std::optional<torch::Tensor> const& global_scale_or_none,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
vllm::ScalarTypeId const& b_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
vllm::ScalarTypeId a_type_id, c_type_id, s_type_id;
auto c_dtype = a.dtype();
if (a.scalar_type() == at::ScalarType::Half) {
a_type_id = vllm::kFloat16.id();
c_type_id = vllm::kFloat16.id();
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
a_type_id = vllm::kBFloat16.id();
c_type_id = vllm::kBFloat16.id();
} else {
c_dtype = b_scales.dtype();
if (b_scales.scalar_type() == at::ScalarType::Half) {
c_type_id = vllm::kFloat16.id();
} else if (b_scales.scalar_type() == at::ScalarType::BFloat16) {
c_type_id = vllm::kBFloat16.id();
} else {
c_type_id = vllm::kBFloat16.id();
TORCH_CHECK(c_or_none.has_value(), "c must be passed for W4A8-FP4");
torch::Tensor c = c_or_none.value();
c_dtype = c.dtype();
if (c.scalar_type() == at::ScalarType::Half) {
c_type_id = vllm::kFloat16.id();
} else if (c.scalar_type() == at::ScalarType::BFloat16) {
c_type_id = vllm::kBFloat16.id();
} else {
TORCH_CHECK(false, "unsupported c dtype");
}
}
if (a.scalar_type() == at::ScalarType::Float8_e4m3fn) {
a_type_id = vllm::kFE4M3fn.id();
} else if (a.scalar_type() == at::ScalarType::Char) {
a_type_id = vllm::kS8.id();
} else {
TORCH_CHECK(false, "unsupported `a` scalar_type");
}
}
s_type_id = c_type_id;
if (b_type_id == vllm::kFE2M1f.id()) {
if (b_scales.scalar_type() == at::ScalarType::Float8_e4m3fn) {
s_type_id = vllm::kFE4M3fn.id();
} else if (b_scales.scalar_type() == at::ScalarType::Float8_e8m0fnu) {
s_type_id = vllm::kFE8M0fnu.id();
} else {
TORCH_CHECK(false,
"When b_type = float4_e2m1f, b_scale scalar type must be",
"float8_e4m3fn (for NVFP4) or float8_e8m0fnu (for MXFP4).");
}
}
vllm::ScalarType a_type = vllm::ScalarType::from_id(a_type_id);
vllm::ScalarType b_type = vllm::ScalarType::from_id(b_type_id);
vllm::ScalarType c_type = vllm::ScalarType::from_id(c_type_id);
vllm::ScalarType s_type = vllm::ScalarType::from_id(s_type_id);
int pack_factor = 32 / b_type.size_bits();
// Verify A
TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
", size_m = ", size_m);
TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
", size_k = ", size_k);
// Verify B
TORCH_CHECK(
size_k % MARLIN_NAMESPACE_NAME::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK((size_k / MARLIN_NAMESPACE_NAME::tile_size) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
", size_k = ", size_k,
", tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK(
b_q_weight.size(1) % MARLIN_NAMESPACE_NAME::tile_size == 0,
"b_q_weight.size(1) = ", b_q_weight.size(1),
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
int actual_size_n =
(b_q_weight.size(1) / MARLIN_NAMESPACE_NAME::tile_size) * pack_factor;
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
", actual_size_n = ", actual_size_n);
// Verify device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.stride(1) == 1, "A.stride(1) is not 1");
// We use int4 (16 bytes) to load A, so A must aligned to 16 bytes
TORCH_CHECK(a.stride(0) % 8 == 0, "A.stride(0) must divisible by 8");
TORCH_CHECK(((uint64_t)a.data_ptr()) % 16 == 0, "A must aligned to 16 bytes");
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
torch::Tensor a_scales;
auto options = torch::TensorOptions().dtype(c_dtype).device(a.device());
auto options_fp32 =
torch::TensorOptions().dtype(at::kFloat).device(a.device());
if (a_scales_or_none.has_value()) {
a_scales = a_scales_or_none.value();
TORCH_CHECK(a_type.size_bits() == 8,
"a_scales can only be used for 8bit activation.");
} else {
a_scales = torch::empty({0}, options_fp32);
TORCH_CHECK(a_type.size_bits() != 8,
"the a_scales parameter must be passed for 8bit activation.");
}
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel
int sms = -1;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
torch::Tensor c;
if (c_or_none.has_value()) {
c = c_or_none.value();
TORCH_CHECK(c.device().is_cuda(), "c is not on GPU");
TORCH_CHECK(c.is_contiguous(), "c is not contiguous");
TORCH_CHECK(c.size(0) == size_m, "Shape mismatch: c.size(0) = ", c.size(0),
", size_m = ", size_m);
TORCH_CHECK(c.size(1) == size_n, "Shape mismatch: c.size(1) = ", c.size(1),
", size_n = ", size_n);
} else {
c = torch::empty({size_m, size_n}, options);
}
if (size_m == 0) return c;
// Alloc C tmp buffer that is going to be used for the global reduce
torch::Tensor c_tmp;
if (use_fp32_reduce) {
int max_m_block_size = (size_m + 16 - 1) / 16 * 16;
max_m_block_size = min(max_m_block_size, 64);
int max_c_tmp_size =
sms * max_m_block_size * MARLIN_NAMESPACE_NAME::max_thread_n;
c_tmp = torch::empty({max_c_tmp_size}, options_fp32);
} else {
c_tmp = torch::empty({0}, options_fp32);
}
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
int rank = b_scales.sizes().size();
TORCH_CHECK(rank == 2, "b_scales rank = ", rank, " is not 2");
TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
" is not size_n = ", size_n);
num_groups = b_scales.size(0);
torch::Tensor g_idx, perm, a_tmp;
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
g_idx = g_idx_or_none.value();
perm = perm_or_none.value();
TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
// Verify g_idx and perm
TORCH_CHECK((g_idx.size(-1) == 0 && perm.size(-1) == 0) ||
(g_idx.size(-1) == size_k && perm.size(-1) == size_k),
"Unexpected g_idx.size(-1) = ", g_idx.size(-1),
" and perm.size(-1) = ", perm.size(-1),
", where size_k = ", size_k);
} else {
g_idx = torch::empty({0}, options);
perm = torch::empty({0}, options);
a_tmp = torch::empty({0}, options);
}
bool has_act_order = g_idx.size(-1) > 0 && perm.size(-1) > 0;
if (has_act_order) {
a_tmp = torch::empty({size_m, size_k}, options);
if (is_k_full) {
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by num_groups = ", num_groups);
group_size = size_k / num_groups;
} else {
group_size = 0;
}
} else {
a_tmp = torch::empty({0}, options);
if (num_groups > 1) {
TORCH_CHECK(
size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by b_scales.size(0) = ", b_scales.size(0));
group_size = size_k / num_groups;
} else {
group_size = -1;
}
}
torch::Tensor global_scale;
if (global_scale_or_none.has_value()) {
global_scale = global_scale_or_none.value();
TORCH_CHECK(b_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn,
"global_scale can only be used for nvfp4 format.");
} else {
global_scale = torch::empty({0}, options);
TORCH_CHECK(!(b_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn),
"the global_scale parameter must be passed for nvfp4 format.");
}
bool has_bias = b_bias_or_none.has_value();
torch::Tensor b_bias;
if (has_bias) {
b_bias = b_bias_or_none.value();
TORCH_CHECK(b_bias.device().is_cuda(), "b_bias is not on GPU");
TORCH_CHECK(b_bias.is_contiguous(), "b_bias is not contiguous");
TORCH_CHECK(b_bias.size(0) == size_n, "b_bias.size(0) != size_n");
TORCH_CHECK(b_bias.stride(0) == 1, "b_bias.stride(0) != 1");
} else {
b_bias = torch::empty({0}, options);
}
torch::Tensor b_zeros;
if (b_zeros_or_none.has_value()) {
b_zeros = b_zeros_or_none.value();
TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
} else {
b_zeros = torch::empty({0}, options);
}
bool has_zp = b_zeros.size(-1) > 0;
if (has_zp) {
TORCH_CHECK(
b_type == vllm::kU4 || b_type == vllm::kU8,
"b_type must be u4 or u8 when has_zp = True. Got = ", b_type.str());
} else {
TORCH_CHECK(b_type == vllm::kU4B8 || b_type == vllm::kU8B128 ||
b_type == vllm::kS4 || b_type == vllm::kS8 ||
b_type == vllm::kFE4M3fn || b_type == vllm::kFE2M1f,
"b_type must be uint4b8, uint8b128, int4, int8, "
"float8_e4m3fn or float4_e2m1f when has_zp = False. Got = ",
b_type.str());
}
if (has_zp && is_zp_float) {
TORCH_CHECK(a.scalar_type() == at::ScalarType::Half,
"Computation type must be float16 (half) when using float zero "
"points.");
}
// Verify b_zeros
if (has_zp) {
int rank = b_zeros.sizes().size();
TORCH_CHECK(rank == 2, "b_zeros rank = ", rank, " is not 2");
if (is_zp_float) {
TORCH_CHECK(b_zeros.size(1) == size_n,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not size_n = ", size_n);
TORCH_CHECK(num_groups == b_zeros.size(0),
"b_zeros dim 0 = ", b_zeros.size(0),
" is not num_groups = ", num_groups);
TORCH_CHECK(num_groups != -1, "num_groups must be != -1");
} else {
TORCH_CHECK(b_zeros.size(0) == num_groups,
"b_zeros dim 0 = ", b_zeros.size(0),
" is not num_groups = ", num_groups);
TORCH_CHECK(b_zeros.size(1) == size_n / pack_factor,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not size_n / pack_factor = ", size_n / pack_factor);
}
}
// Verify workspace size
TORCH_CHECK(size_n % MARLIN_NAMESPACE_NAME::min_thread_n == 0,
"size_n = ", size_n, ", is not divisible by min_thread_n = ",
MARLIN_NAMESPACE_NAME::min_thread_n);
int min_workspace_size = sms;
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = ", workspace.numel(),
" is below min_workspace_size = ", min_workspace_size);
int dev = a.get_device();
TORCH_CHECK(a_scales.scalar_type() == at::ScalarType::Float,
"scalar type of a_scales must be float");
TORCH_CHECK(global_scale.scalar_type() == c.scalar_type(),
"scalar type of global_scale must be the same with c");
if (a_type.size_bits() == 16) {
TORCH_CHECK(
a.scalar_type() == c.scalar_type(),
"scalar type of a must be the same with c for 16 bit activation");
}
marlin::marlin_mm(
a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), c_tmp.data_ptr(),
b_bias.data_ptr(), a_scales.data_ptr(), b_scales.data_ptr(),
global_scale.data_ptr(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr(), size_m, size_n, size_k, a.stride(0),
workspace.data_ptr(), a_type, b_type, c_type, s_type, has_bias,
has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
return c;
}
#endif
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("gptq_marlin_gemm", &gptq_marlin_gemm);
}