mirror of
https://git.datalinker.icu/kijai/ComfyUI-CogVideoXWrapper.git
synced 2025-12-08 20:34:23 +08:00
initial CogVideoX-Fun support
This commit is contained in:
parent
6038b21830
commit
dd60660fee
1296
cogvideox_fun/autoencoder_magvit.py
Normal file
1296
cogvideox_fun/autoencoder_magvit.py
Normal file
File diff suppressed because it is too large
Load Diff
862
cogvideox_fun/pipeline_cogvideox_inpaint.py
Normal file
862
cogvideox_fun/pipeline_cogvideox_inpaint.py
Normal file
@ -0,0 +1,862 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.video_processor import VideoProcessor
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from diffusers import CogVideoX_Fun_Pipeline
|
||||
>>> from diffusers.utils import export_to_video
|
||||
|
||||
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
||||
>>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
||||
>>> prompt = (
|
||||
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
||||
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
||||
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
||||
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
||||
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
||||
... "atmosphere of this unique musical performance."
|
||||
... )
|
||||
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
||||
>>> export_to_video(video, "output.mp4", fps=8)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
||||
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
||||
tw = tgt_width
|
||||
th = tgt_height
|
||||
h, w = src
|
||||
r = h / w
|
||||
if r > (th / tw):
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h))
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
def resize_mask(mask, latent, process_first_frame_only=True):
|
||||
latent_size = latent.size()
|
||||
batch_size, channels, num_frames, height, width = mask.shape
|
||||
|
||||
if process_first_frame_only:
|
||||
target_size = list(latent_size[2:])
|
||||
target_size[0] = 1
|
||||
first_frame_resized = F.interpolate(
|
||||
mask[:, :, 0:1, :, :],
|
||||
size=target_size,
|
||||
mode='trilinear',
|
||||
align_corners=False
|
||||
)
|
||||
|
||||
target_size = list(latent_size[2:])
|
||||
target_size[0] = target_size[0] - 1
|
||||
if target_size[0] != 0:
|
||||
remaining_frames_resized = F.interpolate(
|
||||
mask[:, :, 1:, :, :],
|
||||
size=target_size,
|
||||
mode='trilinear',
|
||||
align_corners=False
|
||||
)
|
||||
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
|
||||
else:
|
||||
resized_mask = first_frame_resized
|
||||
else:
|
||||
target_size = list(latent_size[2:])
|
||||
resized_mask = F.interpolate(
|
||||
mask,
|
||||
size=target_size,
|
||||
mode='trilinear',
|
||||
align_corners=False
|
||||
)
|
||||
return resized_mask
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoX_Fun_PipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
videos: torch.Tensor
|
||||
|
||||
|
||||
class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using CogVideoX.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
transformer ([`CogVideoXTransformer3DModel`]):
|
||||
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->vae->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
transformer: CogVideoXTransformer3DModel,
|
||||
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor_spatial = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.vae_scale_factor_temporal = (
|
||||
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
||||
)
|
||||
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.mask_processor = VaeImageProcessor(
|
||||
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
||||
)
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
video_length,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
video=None,
|
||||
timestep=None,
|
||||
is_strength_max=True,
|
||||
return_noise=False,
|
||||
return_video_latents=False,
|
||||
):
|
||||
shape = (
|
||||
batch_size,
|
||||
(video_length - 1) // self.vae_scale_factor_temporal + 1,
|
||||
num_channels_latents,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if return_video_latents or (latents is None and not is_strength_max):
|
||||
video = video.to(device=device, dtype=self.vae.dtype)
|
||||
|
||||
bs = 1
|
||||
new_video = []
|
||||
for i in range(0, video.shape[0], bs):
|
||||
video_bs = video[i : i + bs]
|
||||
video_bs = self.vae.encode(video_bs)[0]
|
||||
video_bs = video_bs.sample()
|
||||
new_video.append(video_bs)
|
||||
video = torch.cat(new_video, dim = 0)
|
||||
video = video * self.vae.config.scaling_factor
|
||||
|
||||
video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1)
|
||||
video_latents = video_latents.to(device=device, dtype=dtype)
|
||||
video_latents = rearrange(video_latents, "b c f h w -> b f c h w")
|
||||
|
||||
if latents is None:
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
||||
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
|
||||
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
||||
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
||||
else:
|
||||
noise = latents.to(device)
|
||||
latents = noise * self.scheduler.init_noise_sigma
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
outputs = (latents,)
|
||||
|
||||
if return_noise:
|
||||
outputs += (noise,)
|
||||
|
||||
if return_video_latents:
|
||||
outputs += (video_latents,)
|
||||
|
||||
return outputs
|
||||
|
||||
def prepare_mask_latents(
|
||||
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
||||
):
|
||||
# resize the mask to latents shape as we concatenate the mask to the latents
|
||||
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||||
# and half precision
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask = []
|
||||
for i in range(0, mask.shape[0], bs):
|
||||
mask_bs = mask[i : i + bs]
|
||||
mask_bs = self.vae.encode(mask_bs)[0]
|
||||
mask_bs = mask_bs.mode()
|
||||
new_mask.append(mask_bs)
|
||||
mask = torch.cat(new_mask, dim = 0)
|
||||
mask = mask * self.vae.config.scaling_factor
|
||||
|
||||
if masked_image is not None:
|
||||
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
|
||||
bs = 1
|
||||
new_mask_pixel_values = []
|
||||
for i in range(0, masked_image.shape[0], bs):
|
||||
mask_pixel_values_bs = masked_image[i : i + bs]
|
||||
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
|
||||
mask_pixel_values_bs = mask_pixel_values_bs.mode()
|
||||
new_mask_pixel_values.append(mask_pixel_values_bs)
|
||||
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
|
||||
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
|
||||
else:
|
||||
masked_image_latents = None
|
||||
|
||||
return mask, masked_image_latents
|
||||
|
||||
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
||||
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
frames = self.vae.decode(latents).sample
|
||||
frames = (frames / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
frames = frames.cpu().float().numpy()
|
||||
return frames
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
def fuse_qkv_projections(self) -> None:
|
||||
r"""Enables fused QKV projections."""
|
||||
self.fusing_transformer = True
|
||||
self.transformer.fuse_qkv_projections()
|
||||
|
||||
def unfuse_qkv_projections(self) -> None:
|
||||
r"""Disable QKV projection fusion if enabled."""
|
||||
if not self.fusing_transformer:
|
||||
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
||||
else:
|
||||
self.transformer.unfuse_qkv_projections()
|
||||
self.fusing_transformer = False
|
||||
|
||||
def _prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
device: torch.device,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
|
||||
grid_crops_coords = get_resize_crop_region_for_grid(
|
||||
(grid_height, grid_width), base_size_width, base_size_height
|
||||
)
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=self.transformer.config.attention_head_dim,
|
||||
crops_coords=grid_crops_coords,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=num_frames,
|
||||
use_real=True,
|
||||
)
|
||||
|
||||
freqs_cos = freqs_cos.to(device=device)
|
||||
freqs_sin = freqs_sin.to(device=device)
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
height: int = 480,
|
||||
width: int = 720,
|
||||
video: Union[torch.FloatTensor] = None,
|
||||
mask_video: Union[torch.FloatTensor] = None,
|
||||
masked_video_latents: Union[torch.FloatTensor] = None,
|
||||
num_frames: int = 49,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
guidance_scale: float = 6,
|
||||
use_dynamic_cfg: bool = False,
|
||||
num_videos_per_prompt: int = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "numpy",
|
||||
return_dict: bool = False,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 226,
|
||||
strength: float = 1,
|
||||
comfyui_progressbar: bool = False,
|
||||
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_frames (`int`, defaults to `48`):
|
||||
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
||||
contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where
|
||||
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
|
||||
needs to be satisfied is that of divisibility mentioned above.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of videos to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `226`):
|
||||
Maximum sequence length in encoded prompt. Must be consistent with
|
||||
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
if num_frames > 49:
|
||||
raise ValueError(
|
||||
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
||||
)
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
num_videos_per_prompt = 1
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
self.vae.to(device)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
# 4. set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps=num_inference_steps, strength=strength, device=device
|
||||
)
|
||||
self._num_timesteps = len(timesteps)
|
||||
if comfyui_progressbar:
|
||||
from comfy.utils import ProgressBar
|
||||
pbar = ProgressBar(num_inference_steps + 2)
|
||||
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
||||
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
||||
is_strength_max = strength == 1.0
|
||||
|
||||
# 5. Prepare latents.
|
||||
if video is not None:
|
||||
video_length = video.shape[2]
|
||||
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width)
|
||||
init_video = init_video.to(dtype=torch.float32)
|
||||
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length)
|
||||
else:
|
||||
init_video = None
|
||||
|
||||
num_channels_latents = self.vae.config.latent_channels
|
||||
num_channels_transformer = self.transformer.config.in_channels
|
||||
return_image_latents = num_channels_transformer == num_channels_latents
|
||||
|
||||
latents_outputs = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
video_length,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
video=init_video,
|
||||
timestep=latent_timestep,
|
||||
is_strength_max=is_strength_max,
|
||||
return_noise=True,
|
||||
return_video_latents=return_image_latents,
|
||||
)
|
||||
if return_image_latents:
|
||||
latents, noise, image_latents = latents_outputs
|
||||
else:
|
||||
latents, noise = latents_outputs
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
if mask_video is not None:
|
||||
if (mask_video == 255).all():
|
||||
mask_latents = torch.zeros_like(latents)[:, :, :1].to(latents.device, latents.dtype)
|
||||
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
||||
|
||||
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents
|
||||
masked_video_latents_input = (
|
||||
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
||||
)
|
||||
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype)
|
||||
else:
|
||||
# Prepare mask latent variables
|
||||
video_length = video.shape[2]
|
||||
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width)
|
||||
mask_condition = mask_condition.to(dtype=torch.float32)
|
||||
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length)
|
||||
|
||||
if num_channels_transformer != num_channels_latents:
|
||||
mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1])
|
||||
if masked_video_latents is None:
|
||||
masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1
|
||||
else:
|
||||
masked_video = masked_video_latents
|
||||
|
||||
_, masked_video_latents = self.prepare_mask_latents(
|
||||
None,
|
||||
masked_video,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
do_classifier_free_guidance,
|
||||
)
|
||||
mask_latents = resize_mask(1 - mask_condition, masked_video_latents)
|
||||
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor
|
||||
|
||||
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
|
||||
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
||||
|
||||
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents
|
||||
masked_video_latents_input = (
|
||||
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
||||
)
|
||||
|
||||
mask = rearrange(mask, "b c f h w -> b f c h w")
|
||||
mask_input = rearrange(mask_input, "b c f h w -> b f c h w")
|
||||
masked_video_latents_input = rearrange(masked_video_latents_input, "b c f h w -> b f c h w")
|
||||
|
||||
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype)
|
||||
else:
|
||||
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
|
||||
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
||||
mask = rearrange(mask, "b c f h w -> b f c h w")
|
||||
|
||||
inpaint_latents = None
|
||||
else:
|
||||
if num_channels_transformer != num_channels_latents:
|
||||
mask = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
||||
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
|
||||
|
||||
mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
||||
masked_video_latents_input = (
|
||||
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents
|
||||
)
|
||||
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
|
||||
else:
|
||||
mask = torch.zeros_like(init_video[:, :1])
|
||||
mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1])
|
||||
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
|
||||
mask = rearrange(mask, "b c f h w -> b f c h w")
|
||||
|
||||
inpaint_latents = None
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Create rotary embeds if required
|
||||
image_rotary_emb = (
|
||||
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
||||
if self.transformer.config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
# for DPM-solver++
|
||||
old_pred_original_sample = None
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
inpaint_latents=inpaint_latents,
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
# perform guidance
|
||||
if use_dynamic_cfg:
|
||||
self._guidance_scale = 1 + guidance_scale * (
|
||||
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents,
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if comfyui_progressbar:
|
||||
pbar.update(1)
|
||||
|
||||
# if output_type == "numpy":
|
||||
# video = self.decode_latents(latents)
|
||||
# elif not output_type == "latent":
|
||||
# video = self.decode_latents(latents)
|
||||
# video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
||||
# else:
|
||||
# video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
# if not return_dict:
|
||||
# video = torch.from_numpy(video)
|
||||
|
||||
return latents
|
||||
605
cogvideox_fun/transformer_3d.py
Normal file
605
cogvideox_fun/transformer_3d.py
Normal file
@ -0,0 +1,605 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
import glob
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import is_torch_version, logging
|
||||
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
||||
from diffusers.models.attention import Attention, FeedForward
|
||||
from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0
|
||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
class CogVideoXPatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 16,
|
||||
embed_dim: int = 1920,
|
||||
text_embed_dim: int = 4096,
|
||||
bias: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
|
||||
)
|
||||
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
|
||||
|
||||
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
|
||||
r"""
|
||||
Args:
|
||||
text_embeds (`torch.Tensor`):
|
||||
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
|
||||
image_embeds (`torch.Tensor`):
|
||||
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
|
||||
"""
|
||||
text_embeds = self.text_proj(text_embeds)
|
||||
|
||||
batch, num_frames, channels, height, width = image_embeds.shape
|
||||
image_embeds = image_embeds.reshape(-1, channels, height, width)
|
||||
image_embeds = self.proj(image_embeds)
|
||||
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
|
||||
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
|
||||
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
|
||||
|
||||
embeds = torch.cat(
|
||||
[text_embeds, image_embeds], dim=1
|
||||
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
|
||||
return embeds
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class CogVideoXBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
||||
|
||||
Parameters:
|
||||
dim (`int`):
|
||||
The number of channels in the input and output.
|
||||
num_attention_heads (`int`):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`):
|
||||
The number of channels in each head.
|
||||
time_embed_dim (`int`):
|
||||
The number of channels in timestep embedding.
|
||||
dropout (`float`, defaults to `0.0`):
|
||||
The dropout probability to use.
|
||||
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
||||
Activation function to be used in feed-forward.
|
||||
attention_bias (`bool`, defaults to `False`):
|
||||
Whether or not to use bias in attention projection layers.
|
||||
qk_norm (`bool`, defaults to `True`):
|
||||
Whether or not to use normalization after query and key projections in Attention.
|
||||
norm_elementwise_affine (`bool`, defaults to `True`):
|
||||
Whether to use learnable elementwise affine parameters for normalization.
|
||||
norm_eps (`float`, defaults to `1e-5`):
|
||||
Epsilon value for normalization layers.
|
||||
final_dropout (`bool` defaults to `False`):
|
||||
Whether to apply a final dropout after the last feed-forward layer.
|
||||
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
||||
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
||||
ff_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in Feed-forward layer.
|
||||
attention_out_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in Attention output projection layer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
time_embed_dim: int,
|
||||
dropout: float = 0.0,
|
||||
activation_fn: str = "gelu-approximate",
|
||||
attention_bias: bool = False,
|
||||
qk_norm: bool = True,
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
final_dropout: bool = True,
|
||||
ff_inner_dim: Optional[int] = None,
|
||||
ff_bias: bool = True,
|
||||
attention_out_bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# 1. Self Attention
|
||||
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
||||
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="layer_norm" if qk_norm else None,
|
||||
eps=1e-6,
|
||||
bias=attention_bias,
|
||||
out_bias=attention_out_bias,
|
||||
processor=CogVideoXAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 2. Feed Forward
|
||||
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
||||
|
||||
self.ff = FeedForward(
|
||||
dim,
|
||||
dropout=dropout,
|
||||
activation_fn=activation_fn,
|
||||
final_dropout=final_dropout,
|
||||
inner_dim=ff_inner_dim,
|
||||
bias=ff_bias,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.size(1)
|
||||
|
||||
# norm & modulate
|
||||
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
||||
hidden_states, encoder_hidden_states, temb
|
||||
)
|
||||
|
||||
# attention
|
||||
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
||||
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
||||
|
||||
# norm & modulate
|
||||
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
||||
hidden_states, encoder_hidden_states, temb
|
||||
)
|
||||
|
||||
# feed-forward
|
||||
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
||||
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
||||
|
||||
Parameters:
|
||||
num_attention_heads (`int`, defaults to `30`):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, defaults to `64`):
|
||||
The number of channels in each head.
|
||||
in_channels (`int`, defaults to `16`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `16`):
|
||||
The number of channels in the output.
|
||||
flip_sin_to_cos (`bool`, defaults to `True`):
|
||||
Whether to flip the sin to cos in the time embedding.
|
||||
time_embed_dim (`int`, defaults to `512`):
|
||||
Output dimension of timestep embeddings.
|
||||
text_embed_dim (`int`, defaults to `4096`):
|
||||
Input dimension of text embeddings from the text encoder.
|
||||
num_layers (`int`, defaults to `30`):
|
||||
The number of layers of Transformer blocks to use.
|
||||
dropout (`float`, defaults to `0.0`):
|
||||
The dropout probability to use.
|
||||
attention_bias (`bool`, defaults to `True`):
|
||||
Whether or not to use bias in the attention projection layers.
|
||||
sample_width (`int`, defaults to `90`):
|
||||
The width of the input latents.
|
||||
sample_height (`int`, defaults to `60`):
|
||||
The height of the input latents.
|
||||
sample_frames (`int`, defaults to `49`):
|
||||
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
||||
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
||||
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
||||
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
||||
patch_size (`int`, defaults to `2`):
|
||||
The size of the patches to use in the patch embedding layer.
|
||||
temporal_compression_ratio (`int`, defaults to `4`):
|
||||
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
||||
max_text_seq_length (`int`, defaults to `226`):
|
||||
The maximum sequence length of the input text embeddings.
|
||||
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
||||
Activation function to use in feed-forward.
|
||||
timestep_activation_fn (`str`, defaults to `"silu"`):
|
||||
Activation function to use when generating the timestep embeddings.
|
||||
norm_elementwise_affine (`bool`, defaults to `True`):
|
||||
Whether or not to use elementwise affine in normalization layers.
|
||||
norm_eps (`float`, defaults to `1e-5`):
|
||||
The epsilon value to use in normalization layers.
|
||||
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
||||
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
||||
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
||||
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int = 30,
|
||||
attention_head_dim: int = 64,
|
||||
in_channels: int = 16,
|
||||
out_channels: Optional[int] = 16,
|
||||
flip_sin_to_cos: bool = True,
|
||||
freq_shift: int = 0,
|
||||
time_embed_dim: int = 512,
|
||||
text_embed_dim: int = 4096,
|
||||
num_layers: int = 30,
|
||||
dropout: float = 0.0,
|
||||
attention_bias: bool = True,
|
||||
sample_width: int = 90,
|
||||
sample_height: int = 60,
|
||||
sample_frames: int = 49,
|
||||
patch_size: int = 2,
|
||||
temporal_compression_ratio: int = 4,
|
||||
max_text_seq_length: int = 226,
|
||||
activation_fn: str = "gelu-approximate",
|
||||
timestep_activation_fn: str = "silu",
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
spatial_interpolation_scale: float = 1.875,
|
||||
temporal_interpolation_scale: float = 1.0,
|
||||
use_rotary_positional_embeddings: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
post_patch_height = sample_height // patch_size
|
||||
post_patch_width = sample_width // patch_size
|
||||
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
|
||||
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames
|
||||
self.post_patch_height = post_patch_height
|
||||
self.post_patch_width = post_patch_width
|
||||
self.post_time_compression_frames = post_time_compression_frames
|
||||
self.patch_size = patch_size
|
||||
|
||||
# 1. Patch embedding
|
||||
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
|
||||
self.embedding_dropout = nn.Dropout(dropout)
|
||||
|
||||
# 2. 3D positional embeddings
|
||||
spatial_pos_embedding = get_3d_sincos_pos_embed(
|
||||
inner_dim,
|
||||
(post_patch_width, post_patch_height),
|
||||
post_time_compression_frames,
|
||||
spatial_interpolation_scale,
|
||||
temporal_interpolation_scale,
|
||||
)
|
||||
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
|
||||
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
|
||||
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
|
||||
self.register_buffer("pos_embedding", pos_embedding, persistent=False)
|
||||
|
||||
# 3. Time embeddings
|
||||
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
||||
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
||||
|
||||
# 4. Define spatio-temporal transformers blocks
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CogVideoXBlock(
|
||||
dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=activation_fn,
|
||||
attention_bias=attention_bias,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
# 5. Output blocks
|
||||
self.norm_out = AdaLayerNorm(
|
||||
embedding_dim=time_embed_dim,
|
||||
output_dim=2 * inner_dim,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
chunk_dim=1,
|
||||
)
|
||||
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
self.gradient_checkpointing = value
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: Union[int, float, torch.LongTensor],
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
inpaint_latents: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
batch_size, num_frames, channels, height, width = hidden_states.shape
|
||||
|
||||
# 1. Time embedding
|
||||
timesteps = timestep
|
||||
t_emb = self.time_proj(timesteps)
|
||||
|
||||
# timesteps does not contain any weights and will always return f32 tensors
|
||||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||||
# there might be better ways to encapsulate this.
|
||||
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
|
||||
# 2. Patch embedding
|
||||
if inpaint_latents is not None:
|
||||
hidden_states = torch.concat([hidden_states, inpaint_latents], 2)
|
||||
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
||||
|
||||
# 3. Position embedding
|
||||
text_seq_length = encoder_hidden_states.shape[1]
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
seq_length = height * width * num_frames // (self.config.patch_size**2)
|
||||
# pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length]
|
||||
pos_embeds = self.pos_embedding
|
||||
emb_size = hidden_states.size()[-1]
|
||||
pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size)
|
||||
pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3])
|
||||
pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False)
|
||||
pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size)
|
||||
pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1)
|
||||
pos_embeds = pos_embeds[:, : text_seq_length + seq_length]
|
||||
hidden_states = hidden_states + pos_embeds
|
||||
hidden_states = self.embedding_dropout(hidden_states)
|
||||
|
||||
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
# 4. Transformer blocks
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
emb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
if not self.config.use_rotary_positional_embeddings:
|
||||
# CogVideoX-2B
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
else:
|
||||
# CogVideoX-5B
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
# 5. Final block
|
||||
hidden_states = self.norm_out(hidden_states, temb=emb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# 6. Unpatchify
|
||||
p = self.config.patch_size
|
||||
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
|
||||
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}):
|
||||
if subfolder is not None:
|
||||
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
||||
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
|
||||
|
||||
config_file = os.path.join(pretrained_model_path, 'config.json')
|
||||
if not os.path.isfile(config_file):
|
||||
raise RuntimeError(f"{config_file} does not exist")
|
||||
with open(config_file, "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
from diffusers.utils import WEIGHTS_NAME
|
||||
model = cls.from_config(config, **transformer_additional_kwargs)
|
||||
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
||||
model_file_safetensors = model_file.replace(".bin", ".safetensors")
|
||||
if os.path.exists(model_file):
|
||||
state_dict = torch.load(model_file, map_location="cpu")
|
||||
elif os.path.exists(model_file_safetensors):
|
||||
from safetensors.torch import load_file, safe_open
|
||||
state_dict = load_file(model_file_safetensors)
|
||||
else:
|
||||
from safetensors.torch import load_file, safe_open
|
||||
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
|
||||
state_dict = {}
|
||||
for model_file_safetensors in model_files_safetensors:
|
||||
_state_dict = load_file(model_file_safetensors)
|
||||
for key in _state_dict:
|
||||
state_dict[key] = _state_dict[key]
|
||||
|
||||
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size():
|
||||
new_shape = model.state_dict()['patch_embed.proj.weight'].size()
|
||||
if len(new_shape) == 5:
|
||||
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
|
||||
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0
|
||||
else:
|
||||
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight']
|
||||
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
else:
|
||||
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :]
|
||||
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight']
|
||||
|
||||
tmp_state_dict = {}
|
||||
for key in state_dict:
|
||||
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
|
||||
tmp_state_dict[key] = state_dict[key]
|
||||
else:
|
||||
print(key, "Size don't match, skip")
|
||||
state_dict = tmp_state_dict
|
||||
|
||||
m, u = model.load_state_dict(state_dict, strict=False)
|
||||
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
||||
print(m)
|
||||
|
||||
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### Mamba Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
return model
|
||||
246
cogvideox_fun/utils.py
Normal file
246
cogvideox_fun/utils.py
Normal file
@ -0,0 +1,246 @@
|
||||
import os
|
||||
import gc
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
import cv2
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def tensor2pil(image):
|
||||
return Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
|
||||
|
||||
def numpy2pil(image):
|
||||
return Image.fromarray(np.clip(255. * image, 0, 255).astype(np.uint8))
|
||||
|
||||
def to_pil(image):
|
||||
if isinstance(image, Image.Image):
|
||||
return image
|
||||
if isinstance(image, torch.Tensor):
|
||||
return tensor2pil(image)
|
||||
if isinstance(image, np.ndarray):
|
||||
return numpy2pil(image)
|
||||
raise ValueError(f"Cannot convert {type(image)} to PIL.Image")
|
||||
|
||||
ASPECT_RATIO_512 = {
|
||||
'0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
|
||||
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
|
||||
'0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
|
||||
'0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
|
||||
'0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
|
||||
'1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
|
||||
'1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
|
||||
'1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
|
||||
'2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
|
||||
'3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
|
||||
}
|
||||
ASPECT_RATIO_RANDOM_CROP_512 = {
|
||||
'0.42': [320.0, 768.0], '0.5': [352.0, 704.0],
|
||||
'0.57': [384.0, 672.0], '0.68': [416.0, 608.0], '0.78': [448.0, 576.0], '0.88': [480.0, 544.0],
|
||||
'0.94': [480.0, 512.0], '1.0': [512.0, 512.0], '1.07': [512.0, 480.0],
|
||||
'1.13': [544.0, 480.0], '1.29': [576.0, 448.0], '1.46': [608.0, 416.0], '1.75': [672.0, 384.0],
|
||||
'2.0': [704.0, 352.0], '2.4': [768.0, 320.0]
|
||||
}
|
||||
ASPECT_RATIO_RANDOM_CROP_PROB = [
|
||||
1, 2,
|
||||
4, 4, 4, 4,
|
||||
8, 8, 8,
|
||||
4, 4, 4, 4,
|
||||
2, 1
|
||||
]
|
||||
ASPECT_RATIO_RANDOM_CROP_PROB = np.array(ASPECT_RATIO_RANDOM_CROP_PROB) / sum(ASPECT_RATIO_RANDOM_CROP_PROB)
|
||||
|
||||
def get_closest_ratio(height: float, width: float, ratios: dict = ASPECT_RATIO_512):
|
||||
aspect_ratio = height / width
|
||||
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
|
||||
return ratios[closest_ratio], float(closest_ratio)
|
||||
|
||||
|
||||
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
|
||||
target_pixels = int(base_resolution) * int(base_resolution)
|
||||
original_width, original_height = Image.open(image).size
|
||||
ratio = (target_pixels / (original_width * original_height)) ** 0.5
|
||||
width_slider = round(original_width * ratio)
|
||||
height_slider = round(original_height * ratio)
|
||||
return height_slider, width_slider
|
||||
|
||||
def color_transfer(sc, dc):
|
||||
"""
|
||||
Transfer color distribution from of sc, referred to dc.
|
||||
|
||||
Args:
|
||||
sc (numpy.ndarray): input image to be transfered.
|
||||
dc (numpy.ndarray): reference image
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: Transferred color distribution on the sc.
|
||||
"""
|
||||
|
||||
def get_mean_and_std(img):
|
||||
x_mean, x_std = cv2.meanStdDev(img)
|
||||
x_mean = np.hstack(np.around(x_mean, 2))
|
||||
x_std = np.hstack(np.around(x_std, 2))
|
||||
return x_mean, x_std
|
||||
|
||||
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB)
|
||||
s_mean, s_std = get_mean_and_std(sc)
|
||||
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB)
|
||||
t_mean, t_std = get_mean_and_std(dc)
|
||||
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean
|
||||
np.putmask(img_n, img_n > 255, 255)
|
||||
np.putmask(img_n, img_n < 0, 0)
|
||||
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB)
|
||||
return dst
|
||||
|
||||
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False):
|
||||
videos = rearrange(videos, "b c t h w -> t b c h w")
|
||||
outputs = []
|
||||
for x in videos:
|
||||
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
||||
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
||||
if rescale:
|
||||
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
||||
x = (x * 255).numpy().astype(np.uint8)
|
||||
outputs.append(Image.fromarray(x))
|
||||
|
||||
if color_transfer_post_process:
|
||||
for i in range(1, len(outputs)):
|
||||
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0])))
|
||||
|
||||
os.makedirs(os.path.dirname(path), exist_ok=True)
|
||||
if imageio_backend:
|
||||
if path.endswith("mp4"):
|
||||
imageio.mimsave(path, outputs, fps=fps)
|
||||
else:
|
||||
imageio.mimsave(path, outputs, duration=(1000 * 1/fps))
|
||||
else:
|
||||
if path.endswith("mp4"):
|
||||
path = path.replace('.mp4', '.gif')
|
||||
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0)
|
||||
|
||||
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
|
||||
if validation_image_start is not None and validation_image_end is not None:
|
||||
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
|
||||
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
|
||||
image_start = image_start.resize([sample_size[1], sample_size[0]])
|
||||
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_start = clip_image = validation_image_start
|
||||
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
|
||||
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
|
||||
|
||||
if type(validation_image_end) is str and os.path.isfile(validation_image_end):
|
||||
image_end = Image.open(validation_image_end).convert("RGB")
|
||||
image_end = image_end.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_end = validation_image_end
|
||||
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end]
|
||||
|
||||
if type(image_start) is list:
|
||||
clip_image = clip_image[0]
|
||||
start_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
|
||||
dim=2
|
||||
)
|
||||
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
|
||||
input_video[:, :, :len(image_start)] = start_video
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, len(image_start):] = 255
|
||||
else:
|
||||
input_video = torch.tile(
|
||||
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
|
||||
[1, 1, video_length, 1, 1]
|
||||
)
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, 1:] = 255
|
||||
|
||||
if type(image_end) is list:
|
||||
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end]
|
||||
end_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end],
|
||||
dim=2
|
||||
)
|
||||
input_video[:, :, -len(end_video):] = end_video
|
||||
|
||||
input_video_mask[:, :, -len(image_end):] = 0
|
||||
else:
|
||||
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size)
|
||||
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
|
||||
input_video_mask[:, :, -1:] = 0
|
||||
|
||||
input_video = input_video / 255
|
||||
|
||||
elif validation_image_start is not None:
|
||||
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
|
||||
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
|
||||
image_start = image_start.resize([sample_size[1], sample_size[0]])
|
||||
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
|
||||
else:
|
||||
image_start = clip_image = validation_image_start
|
||||
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
|
||||
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
|
||||
image_end = None
|
||||
|
||||
if type(image_start) is list:
|
||||
clip_image = clip_image[0]
|
||||
start_video = torch.cat(
|
||||
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
|
||||
dim=2
|
||||
)
|
||||
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
|
||||
input_video[:, :, :len(image_start)] = start_video
|
||||
input_video = input_video / 255
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, len(image_start):] = 255
|
||||
else:
|
||||
input_video = torch.tile(
|
||||
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
|
||||
[1, 1, video_length, 1, 1]
|
||||
) / 255
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, 1:, ] = 255
|
||||
else:
|
||||
image_start = None
|
||||
image_end = None
|
||||
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]])
|
||||
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255
|
||||
clip_image = None
|
||||
|
||||
del image_start
|
||||
del image_end
|
||||
gc.collect()
|
||||
|
||||
return input_video, input_video_mask, clip_image
|
||||
|
||||
def get_video_to_video_latent(input_video_path, video_length, sample_size):
|
||||
if type(input_video_path) is str:
|
||||
cap = cv2.VideoCapture(input_video_path)
|
||||
input_video = []
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
frame = cv2.resize(frame, (sample_size[1], sample_size[0]))
|
||||
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
||||
cap.release()
|
||||
else:
|
||||
input_video = input_video_path
|
||||
|
||||
input_video = torch.from_numpy(np.array(input_video))[:video_length]
|
||||
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
|
||||
|
||||
input_video_mask = torch.zeros_like(input_video[:, :1])
|
||||
input_video_mask[:, :, :] = 255
|
||||
|
||||
return input_video, input_video_mask, None
|
||||
162
nodes.py
162
nodes.py
@ -3,11 +3,17 @@ import torch
|
||||
import folder_paths
|
||||
import comfy.model_management as mm
|
||||
from comfy.utils import ProgressBar
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler
|
||||
|
||||
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from .pipeline_cogvideox import CogVideoXPipeline
|
||||
from contextlib import nullcontext
|
||||
|
||||
from .cogvideox_fun.transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
|
||||
from .cogvideox_fun.autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
|
||||
from .cogvideox_fun.utils import get_image_to_video_latent, ASPECT_RATIO_512, get_closest_ratio, to_pil
|
||||
from .cogvideox_fun.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
|
||||
from PIL import Image
|
||||
|
||||
import logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
@ -24,6 +30,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
"THUDM/CogVideoX-2b",
|
||||
"THUDM/CogVideoX-5b",
|
||||
"bertjiazheng/KoolCogVideoX-5b",
|
||||
"kijai/CogVideoX-Fun-pruned"
|
||||
],
|
||||
),
|
||||
|
||||
@ -50,10 +57,16 @@ class DownloadAndLoadCogVideoModel:
|
||||
|
||||
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
||||
|
||||
if "2b" in model:
|
||||
if "Fun" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP")
|
||||
if not os.path.exists(base_path):
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideo", "CogVideoX-Fun-5b-InP")
|
||||
|
||||
elif "2b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideo", "CogVideo2B")
|
||||
elif "5b" in model:
|
||||
base_path = os.path.join(folder_paths.models_dir, "CogVideo", (model.split("/")[-1]))
|
||||
|
||||
|
||||
if not os.path.exists(base_path):
|
||||
log.info(f"Downloading model to: {base_path}")
|
||||
@ -65,25 +78,36 @@ class DownloadAndLoadCogVideoModel:
|
||||
local_dir=base_path,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
if "Fun" in model:
|
||||
transformer = CogVideoXTransformer3DModelFun.from_pretrained(base_path, subfolder="transformer")
|
||||
else:
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer")
|
||||
|
||||
transformer = transformer.to(dtype).to(offload_device)
|
||||
|
||||
if fp8_transformer == "enabled" or fp8_transformer == "fastmode":
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer").to(offload_device)
|
||||
if "2b" in model:
|
||||
for name, param in transformer.named_parameters():
|
||||
if name != "pos_embedding":
|
||||
param.data = param.data.to(torch.float8_e4m3fn)
|
||||
else:
|
||||
transformer.to(torch.float8_e4m3fn)
|
||||
|
||||
|
||||
if fp8_transformer == "fastmode":
|
||||
from .fp8_optimization import convert_fp8_linear
|
||||
convert_fp8_linear(transformer, dtype)
|
||||
else:
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder="transformer").to(dtype).to(offload_device)
|
||||
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
if "Fun" in model:
|
||||
vae = AutoencoderKLCogVideoXFun.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
else:
|
||||
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device)
|
||||
scheduler = CogVideoXDDIMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
||||
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
if "Fun" in model:
|
||||
pipe = CogVideoX_Fun_Pipeline_Inpaint(vae, transformer, scheduler)
|
||||
else:
|
||||
pipe = CogVideoXPipeline(vae, transformer, scheduler)
|
||||
if enable_sequential_cpu_offload:
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
@ -92,7 +116,7 @@ class DownloadAndLoadCogVideoModel:
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
||||
elif compile == "onediff":
|
||||
from onediffx import compile_pipe, quantize_pipe
|
||||
from onediffx import compile_pipe
|
||||
os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1'
|
||||
|
||||
pipe = compile_pipe(
|
||||
@ -280,6 +304,7 @@ class CogVideoSampler:
|
||||
"optional": {
|
||||
"samples": ("LATENT", ),
|
||||
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"image_cond_latents": ("LATENT", ),
|
||||
}
|
||||
}
|
||||
|
||||
@ -288,7 +313,8 @@ class CogVideoSampler:
|
||||
FUNCTION = "process"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def process(self, pipeline, positive, negative, steps, cfg, seed, height, width, num_frames, scheduler, t_tile_length, t_tile_overlap, samples=None, denoise_strength=1.0):
|
||||
def process(self, pipeline, positive, negative, steps, cfg, seed, height, width, num_frames, scheduler, t_tile_length, t_tile_overlap, samples=None,
|
||||
denoise_strength=1.0, image_cond_latents=None):
|
||||
mm.soft_empty_cache()
|
||||
|
||||
assert t_tile_length > t_tile_overlap, "t_tile_length must be greater than t_tile_overlap"
|
||||
@ -328,6 +354,7 @@ class CogVideoSampler:
|
||||
t_tile_overlap = t_tile_overlap,
|
||||
guidance_scale=cfg,
|
||||
latents=samples["samples"] if samples is not None else None,
|
||||
image_cond_latents=image_cond_latents["samples"] if image_cond_latents is not None else None,
|
||||
denoise_strength=denoise_strength,
|
||||
prompt_embeds=positive.to(dtype).to(device),
|
||||
negative_prompt_embeds=negative.to(dtype).to(device),
|
||||
@ -387,7 +414,7 @@ class CogVideoDecode:
|
||||
latents = latents.to(vae.dtype)
|
||||
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
||||
latents = 1 / vae.config.scaling_factor * latents
|
||||
|
||||
|
||||
frames = vae.decode(latents).sample
|
||||
if not pipeline["cpu_offloading"]:
|
||||
vae.to(offload_device)
|
||||
@ -399,18 +426,127 @@ class CogVideoDecode:
|
||||
|
||||
return (video,)
|
||||
|
||||
class CogVideoXFunSampler:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"pipeline": ("COGVIDEOPIPE",),
|
||||
"positive": ("CONDITIONING", ),
|
||||
"negative": ("CONDITIONING", ),
|
||||
"video_length": ("INT", {"default": 49, "min": 5, "max": 49, "step": 4}),
|
||||
"base_resolution": (
|
||||
[
|
||||
512,
|
||||
768,
|
||||
960,
|
||||
1024,
|
||||
], {"default": 768}
|
||||
),
|
||||
"seed": ("INT", {"default": 43, "min": 0, "max": 0xffffffffffffffff}),
|
||||
"steps": ("INT", {"default": 50, "min": 1, "max": 200, "step": 1}),
|
||||
"cfg": ("FLOAT", {"default": 6.0, "min": 1.0, "max": 20.0, "step": 0.01}),
|
||||
"scheduler": (
|
||||
[
|
||||
"Euler",
|
||||
"Euler A",
|
||||
"DPM++",
|
||||
"PNDM",
|
||||
"DDIM",
|
||||
],
|
||||
{
|
||||
"default": 'DDIM'
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional":{
|
||||
"start_img": ("IMAGE",),
|
||||
"end_img": ("IMAGE",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("COGVIDEOPIPE", "LATENT",)
|
||||
RETURN_NAMES = ("cogvideo_pipe", "samples",)
|
||||
FUNCTION = "process"
|
||||
CATEGORY = "CogVideoWrapper"
|
||||
|
||||
def process(self, pipeline, positive, negative, video_length, base_resolution, seed, steps, cfg, scheduler, start_img=None, end_img=None):
|
||||
device = mm.get_torch_device()
|
||||
offload_device = mm.unet_offload_device()
|
||||
pipe = pipeline["pipe"]
|
||||
dtype = pipeline["dtype"]
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
mm.soft_empty_cache()
|
||||
|
||||
start_img = [to_pil(_start_img) for _start_img in start_img] if start_img is not None else None
|
||||
end_img = [to_pil(_end_img) for _end_img in end_img] if end_img is not None else None
|
||||
# Count most suitable height and width
|
||||
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
|
||||
original_width, original_height = start_img[0].size if type(start_img) is list else Image.open(start_img).size
|
||||
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
|
||||
height, width = [int(x / 16) * 16 for x in closest_size]
|
||||
|
||||
base_path = pipeline["base_path"]
|
||||
|
||||
# Load Sampler
|
||||
if scheduler == "DPM++":
|
||||
noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(base_path, subfolder= 'scheduler')
|
||||
elif scheduler == "Euler":
|
||||
noise_scheduler = EulerDiscreteScheduler.from_pretrained(base_path, subfolder= 'scheduler')
|
||||
elif scheduler == "Euler A":
|
||||
noise_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(base_path, subfolder= 'scheduler')
|
||||
elif scheduler == "PNDM":
|
||||
noise_scheduler = PNDMScheduler.from_pretrained(base_path, subfolder= 'scheduler')
|
||||
elif scheduler == "DDIM":
|
||||
noise_scheduler = DDIMScheduler.from_pretrained(base_path, subfolder= 'scheduler')
|
||||
pipe.scheduler = noise_scheduler
|
||||
|
||||
#if not pipeline["cpu_offloading"]:
|
||||
# pipe.transformer.to(device)
|
||||
generator= torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
autocastcondition = not pipeline["onediff"]
|
||||
autocast_context = torch.autocast(mm.get_autocast_device(device)) if autocastcondition else nullcontext()
|
||||
with autocast_context:
|
||||
video_length = int((video_length - 1) // pipe.vae.config.temporal_compression_ratio * pipe.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
|
||||
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_img, end_img, video_length=video_length, sample_size=(height, width))
|
||||
|
||||
latents = pipe(
|
||||
prompt_embeds=positive.to(dtype).to(device),
|
||||
negative_prompt_embeds=negative.to(dtype).to(device),
|
||||
num_frames = video_length,
|
||||
height = height,
|
||||
width = width,
|
||||
generator = generator,
|
||||
guidance_scale = cfg,
|
||||
num_inference_steps = steps,
|
||||
|
||||
video = input_video,
|
||||
mask_video = input_video_mask,
|
||||
comfyui_progressbar = True,
|
||||
)
|
||||
#if not pipeline["cpu_offloading"]:
|
||||
# pipe.transformer.to(offload_device)
|
||||
mm.soft_empty_cache()
|
||||
print(latents.shape)
|
||||
|
||||
return (pipeline, {"samples": latents})
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel,
|
||||
"CogVideoSampler": CogVideoSampler,
|
||||
"CogVideoDecode": CogVideoDecode,
|
||||
"CogVideoTextEncode": CogVideoTextEncode,
|
||||
"CogVideoImageEncode": CogVideoImageEncode
|
||||
"CogVideoImageEncode": CogVideoImageEncode,
|
||||
"CogVideoXFunSampler": CogVideoXFunSampler
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model",
|
||||
"CogVideoSampler": "CogVideo Sampler",
|
||||
"CogVideoDecode": "CogVideo Decode",
|
||||
"CogVideoTextEncode": "CogVideo TextEncode",
|
||||
"CogVideoImageEncode": "CogVideo ImageEncode"
|
||||
"CogVideoImageEncode": "CogVideo ImageEncode",
|
||||
"CogVideoXFunSampler": "CogVideoXFun Sampler"
|
||||
}
|
||||
@ -333,6 +333,7 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
image_cond_latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
device = torch.device("cuda"),
|
||||
@ -442,6 +443,20 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latents
|
||||
)
|
||||
latents = latents.to(self.transformer.dtype)
|
||||
|
||||
# 5.5.
|
||||
if image_cond_latents is not None:
|
||||
image_cond_latents = torch.cat(image_cond_latents, dim=0).to(self.transformer.dtype)#.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
||||
|
||||
padding_shape = (
|
||||
batch_size,
|
||||
num_frames - 1,
|
||||
latent_channels,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.transformer.dtype)
|
||||
image_latents = torch.cat([image_latents, latent_padding], dim=1)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
@ -582,6 +597,10 @@ class CogVideoXPipeline(DiffusionPipeline):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
if image_cond_latents is not None:
|
||||
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
|
||||
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user