Compare commits

...

13 Commits

Author SHA1 Message Date
kijai
cbe2837e50 Fix old model loading 2025-06-15 12:52:39 +03:00
kijai
48c7716b2e Simple basic 2.1 meshgen
just the bare minimum
2025-06-14 00:19:31 +03:00
Jukka Seppänen
2ceba3841b
Add files via upload 2025-06-12 11:00:09 +03:00
kijai
4a87c71089 typo... 2025-06-11 15:30:55 +03:00
kijai
c1f95d9a6e bump version 2025-04-22 08:58:33 +03:00
kijai
896f0a3531 Update nodes.py 2025-04-22 08:54:26 +03:00
kijai
c50d0b47b5 Add nodes to convert between ComfyUI native MESH object and the wrapper TRIMESH object 2025-04-14 19:57:25 +03:00
kijai
b8e2d2c800 Update nodes.py 2025-04-14 16:18:35 +03:00
kijai
04b4d350a0 Merge branch 'main' of https://github.com/kijai/ComfyUI-Hunyuan3DWrapper 2025-04-14 01:46:40 +03:00
kijai
5e684d2334 Possible workaround for module import path on some configurations 2025-04-14 01:46:39 +03:00
Jukka Seppänen
b432560c19
Merge pull request #112 from bigeyex/patch-1
import torch first to load dll correctly
2025-03-31 12:12:21 +03:00
Yu Wang
977213426f
import torch first to load dll correctly
when custom_rasterizer_kernel is imported before torch under cu128/python 3.12, the following error will raise:

ImportError: DLL load failed while importing custom_rasterizer_kernel: 找不到指定的模块。 

simply swapping these two imports will solve this issue
2025-03-30 16:24:10 +08:00
kijai
48dae15e4a Add turbo paint model to loader 2025-03-24 11:41:33 +02:00
55 changed files with 10222 additions and 82 deletions

View File

@ -0,0 +1,82 @@
model:
target: .hy3dshape.hy3dshape.models.denoisers.hunyuandit.HunYuanDiTPlain
params:
input_size: &num_latents 4096
in_channels: 64
hidden_size: 2048
context_dim: 1024
depth: 21
num_heads: 16
qk_norm: true
text_len: 1370
with_decoupled_ca: false
use_attention_pooling: false
qk_norm_type: 'rms'
qkv_bias: false
use_pos_emb: false
num_moe_layers: 6
num_experts: 8
moe_top_k: 2
vae:
target: .hy3dshape.hy3dshape.models.autoencoders.ShapeVAE
params:
num_latents: *num_latents
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
num_encoder_layers: 8
num_decoder_layers: 16
qkv_bias: false
qk_norm: true
scale_factor: 1.0039506158752403
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
point_feats: 4
pc_size: 81920
pc_sharpedge_size: 0
conditioner:
target: .hy3dshape.hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino large
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1024
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 16
num_channels: 3
num_hidden_layers: 24
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: false
image_size: 518
use_cls_token: true
scheduler:
target: .hy3dshape.hy3dshape.schedulers.FlowMatchEulerDiscreteScheduler
params:
num_train_timesteps: 1000
image_processor:
target: .hy3dshape.hy3dshape.preprocessors.ImageProcessorV2
params:
size: 512
border_ratio: 0.15
pipeline:
target: .hy3dshape.hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline

View File

@ -40,7 +40,7 @@ from tqdm import tqdm
from accelerate import init_empty_weights from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device from accelerate.utils import set_module_tensor_to_device
from comfy.utils import ProgressBar from comfy.utils import ProgressBar, load_torch_file
import comfy.model_management as mm import comfy.model_management as mm
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -124,13 +124,15 @@ def export_to_trimesh(mesh_output):
def get_obj_from_str(string, reload=False): def get_obj_from_str(string, reload=False):
package_directory_name = os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
module, cls = string.rsplit(".", 1) module, cls = string.rsplit(".", 1)
if reload: if reload:
module_imp = importlib.import_module(module) module_imp = importlib.import_module(module)
importlib.reload(module_imp) importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=package_directory_name), cls) try:
obj = getattr(importlib.import_module(module, package=os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))), cls)
except:
obj = getattr(importlib.import_module(module, package=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath( __file__ ))))), cls)
return obj
def instantiate_from_config(config, **kwargs): def instantiate_from_config(config, **kwargs):
@ -158,33 +160,21 @@ class Hunyuan3DDiTPipeline:
scheduler="FlowMatchEulerDiscreteScheduler", scheduler="FlowMatchEulerDiscreteScheduler",
**kwargs, **kwargs,
): ):
new_sd = {}
# load ckpt sd = load_torch_file(ckpt_path)
if use_safetensors: if ckpt_path.endswith('.safetensors'):
ckpt_path = ckpt_path.replace('.ckpt', '.safetensors') for key, value in sd.items():
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Model file {ckpt_path} not found")
logger.info(f"Loading model from {ckpt_path}")
if use_safetensors:
# parse safetensors
import safetensors.torch
safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
ckpt = {}
for key, value in safetensors_ckpt.items():
model_name = key.split('.')[0] model_name = key.split('.')[0]
new_key = key[len(model_name) + 1:] new_key = key[len(model_name) + 1:]
if model_name not in ckpt: if model_name not in new_sd:
ckpt[model_name] = {} new_sd[model_name] = {}
ckpt[model_name][new_key] = value new_sd[model_name][new_key] = value
else:
ckpt = torch.load(ckpt_path, map_location='cpu')
script_directory = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) script_directory = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# load config # load config
single_block_nums = set() single_block_nums = set()
for k in ckpt["model"].keys(): for k in new_sd["model"].keys():
if k.startswith('single_blocks.'): if k.startswith('single_blocks.'):
block_num = int(k.split('.')[1]) block_num = int(k.split('.')[1])
single_block_nums.add(block_num) single_block_nums.add(block_num)
@ -199,7 +189,7 @@ class Hunyuan3DDiTPipeline:
# load model # load model
if "guidance_in.in_layer.bias" in ckpt['model']: #guidance_in.in_layer.bias if "guidance_in.in_layer.bias" in new_sd['model']: #guidance_in.in_layer.bias
logger.info("Model has guidance_in, setting guidance_embed to True") logger.info("Model has guidance_in, setting guidance_embed to True")
config['model']['params']['guidance_embed'] = True config['model']['params']['guidance_embed'] = True
config['conditioner']['params']['main_image_encoder']['kwargs']['has_guidance_embed'] = True config['conditioner']['params']['main_image_encoder']['kwargs']['has_guidance_embed'] = True
@ -215,15 +205,15 @@ class Hunyuan3DDiTPipeline:
conditioner = instantiate_from_config(config['conditioner']) conditioner = instantiate_from_config(config['conditioner'])
#model #model
for name, param in model.named_parameters(): for name, param in model.named_parameters():
set_module_tensor_to_device(model, name, device=offload_device, dtype=dtype, value=ckpt['model'][name]) set_module_tensor_to_device(model, name, device=offload_device, dtype=dtype, value=new_sd['model'][name])
#vae #vae
for name, param in vae.named_parameters(): for name, param in vae.named_parameters():
set_module_tensor_to_device(vae, name, device=offload_device, dtype=dtype, value=ckpt['vae'][name]) set_module_tensor_to_device(vae, name, device=offload_device, dtype=dtype, value=new_sd['vae'][name])
if 'conditioner' in ckpt: if 'conditioner' in new_sd:
#conditioner.load_state_dict(ckpt['conditioner']) #conditioner.load_state_dict(ckpt['conditioner'])
for name, param in conditioner.named_parameters(): for name, param in conditioner.named_parameters():
set_module_tensor_to_device(conditioner, name, device=offload_device, dtype=dtype, value=ckpt['conditioner'][name]) set_module_tensor_to_device(conditioner, name, device=offload_device, dtype=dtype, value=new_sd['conditioner'][name])
image_processor = instantiate_from_config(config['image_processor']) image_processor = instantiate_from_config(config['image_processor'])
@ -255,49 +245,6 @@ class Hunyuan3DDiTPipeline:
return cls(**model_kwargs), vae return cls(**model_kwargs), vae
# @classmethod
# def from_pretrained(
# cls,
# model_path,
# ckpt_name='model.ckpt',
# config_name='config.yaml',
# device='cuda',
# dtype=torch.float16,
# use_safetensors=None,
# **kwargs,
# ):
# original_model_path = model_path
# if not os.path.exists(model_path):
# # try local path
# base_dir = "checkpoints"
# model_path = os.path.join(base_dir, model_path, 'hunyuan3d-dit-v2-0')
# if not os.path.exists(model_path):
# try:
# import huggingface_hub
# # download from huggingface
# huggingface_hub.snapshot_download(
# repo_id="tencent/Hunyuan3D-2",
# local_dir=base_dir,)
# except ImportError:
# logger.warning(
# "You need to install HuggingFace Hub to load models from the hub."
# )
# raise RuntimeError(f"Model path {model_path} not found")
# if not os.path.exists(model_path):
# raise FileNotFoundError(f"Model path {original_model_path} not found")
# config_path = os.path.join(model_path, config_name)
# ckpt_path = os.path.join(model_path, ckpt_name)
# return cls.from_single_file(
# ckpt_path,
# config_path,
# device=device,
# dtype=dtype,
# use_safetensors=use_safetensors,
# **kwargs
# )
def __init__( def __init__(
self, self,
#vae, #vae,

View File

@ -22,8 +22,8 @@
# fine-tuning enabling code and other elements of the foregoing made publicly available # fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import custom_rasterizer_kernel
import torch import torch
import custom_rasterizer_kernel
def rasterize(pos, tri, resolution, clamp_depth=torch.zeros(0), use_depth_prior=0): def rasterize(pos, tri, resolution, clamp_depth=torch.zeros(0), use_depth_prior=0):

81
hy3dshape/LICENSE Normal file
View File

@ -0,0 +1,81 @@
TENCENT HUNYUAN 3D 2.1 COMMUNITY LICENSE AGREEMENT
Tencent Hunyuan 3D 2.1 Release Date: June 13, 2025
THIS LICENSE AGREEMENT DOES NOT APPLY IN THE EUROPEAN UNION, UNITED KINGDOM AND SOUTH KOREA AND IS EXPRESSLY LIMITED TO THE TERRITORY, AS DEFINED BELOW.
By clicking to agree or by using, reproducing, modifying, distributing, performing or displaying any portion or element of the Tencent Hunyuan 3D 2.1 Works, including via any Hosted Service, You will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
1. DEFINITIONS.
a. “Acceptable Use Policy” shall mean the policy made available by Tencent as set forth in the Exhibit A.
b. “Agreement” shall mean the terms and conditions for use, reproduction, distribution, modification, performance and displaying of Tencent Hunyuan 3D 2.1 Works or any portion or element thereof set forth herein.
c. “Documentation” shall mean the specifications, manuals and documentation for Tencent Hunyuan 3D 2.1 made publicly available by Tencent.
d. “Hosted Service” shall mean a hosted service offered via an application programming interface (API), web access, or any other electronic or remote means.
e. “Licensee,” “You” or “Your” shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Tencent Hunyuan 3D 2.1 Works for any purpose and in any field of use.
f. “Materials” shall mean, collectively, Tencents proprietary Tencent Hunyuan 3D 2.1 and Documentation (and any portion thereof) as made available by Tencent under this Agreement.
g. “Model Derivatives” shall mean all: (i) modifications to Tencent Hunyuan 3D 2.1 or any Model Derivative of Tencent Hunyuan 3D 2.1; (ii) works based on Tencent Hunyuan 3D 2.1 or any Model Derivative of Tencent Hunyuan 3D 2.1; or (iii) any other machine learning model which is created by transfer of patterns of the weights, parameters, operations, or Output of Tencent Hunyuan 3D 2.1 or any Model Derivative of Tencent Hunyuan 3D 2.1, to that model in order to cause that model to perform similarly to Tencent Hunyuan 3D 2.1 or a Model Derivative of Tencent Hunyuan 3D 2.1, including distillation methods, methods that use intermediate data representations, or methods based on the generation of synthetic data Outputs by Tencent Hunyuan 3D 2.1 or a Model Derivative of Tencent Hunyuan 3D 2.1 for training that model. For clarity, Outputs by themselves are not deemed Model Derivatives.
h. “Output” shall mean the information and/or content output of Tencent Hunyuan 3D 2.1 or a Model Derivative that results from operating or otherwise using Tencent Hunyuan 3D 2.1 or a Model Derivative, including via a Hosted Service.
i. “Tencent,” “We” or “Us” shall mean THL Q Limited.
j. “Tencent Hunyuan 3D 2.1” shall mean the 3D generation models and their software and algorithms, including trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing made publicly available by Us at [ https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1].
k. “Tencent Hunyuan 3D 2.1 Works” shall mean: (i) the Materials; (ii) Model Derivatives; and (iii) all derivative works thereof.
l. “Territory” shall mean the worldwide territory, excluding the territory of the European Union, United Kingdom and South Korea.
m. “Third Party” or “Third Parties” shall mean individuals or legal entities that are not under common control with Us or You.
n. “including” shall mean including but not limited to.
2. GRANT OF RIGHTS.
We grant You, for the Territory only, a non-exclusive, non-transferable and royalty-free limited license under Tencents intellectual property or other rights owned by Us embodied in or utilized by the Materials to use, reproduce, distribute, create derivative works of (including Model Derivatives), and make modifications to the Materials, only in accordance with the terms of this Agreement and the Acceptable Use Policy, and You must not violate (or encourage or permit anyone else to violate) any term of this Agreement or the Acceptable Use Policy.
3. DISTRIBUTION.
You may, subject to Your compliance with this Agreement, distribute or make available to Third Parties the Tencent Hunyuan 3D 2.1 Works, exclusively in the Territory, provided that You meet all of the following conditions:
a. You must provide all such Third Party recipients of the Tencent Hunyuan 3D 2.1 Works or products or services using them a copy of this Agreement;
b. You must cause any modified files to carry prominent notices stating that You changed the files;
c. You are encouraged to: (i) publish at least one technology introduction blogpost or one public statement expressing Your experience of using the Tencent Hunyuan 3D 2.1 Works; and (ii) mark the products or services developed by using the Tencent Hunyuan 3D 2.1 Works to indicate that the product/service is “Powered by Tencent Hunyuan”; and
d. All distributions to Third Parties (other than through a Hosted Service) must be accompanied by a “Notice” text file that contains the following notice: “Tencent Hunyuan 3D 2.1 is licensed under the Tencent Hunyuan 3D 2.1 Community License Agreement, Copyright © 2025 Tencent. All Rights Reserved. The trademark rights of “Tencent Hunyuan” are owned by Tencent or its affiliate.”
You may add Your own copyright statement to Your modifications and, except as set forth in this Section and in Section 5, may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Model Derivatives as a whole, provided Your use, reproduction, modification, distribution, performance and display of the work otherwise complies with the terms and conditions of this Agreement (including as regards the Territory). If You receive Tencent Hunyuan 3D 2.1 Works from a Licensee as part of an integrated end user product, then this Section 3 of this Agreement will not apply to You.
4. ADDITIONAL COMMERCIAL TERMS.
If, on the Tencent Hunyuan 3D 2.1 version release date, the monthly active users of all products or services made available by or for Licensee is greater than 1 million monthly active users in the preceding calendar month, You must request a license from Tencent, which Tencent may grant to You in its sole discretion, and You are not authorized to exercise any of the rights under this Agreement unless or until Tencent otherwise expressly grants You such rights.
Subject to Tencent's written approval, you may request a license for the use of Tencent Hunyuan 3D 2.1 by submitting the following information to hunyuan3d@tencent.com:
a. Your companys name and associated business sector that plans to use Tencent Hunyuan 3D 2.1.
b. Your intended use case and the purpose of using Tencent Hunyuan 3D 2.1.
c. Your plans to modify Tencent Hunyuan 3D 2.1 or create Model Derivatives.
5. RULES OF USE.
a. Your use of the Tencent Hunyuan 3D 2.1 Works must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Tencent Hunyuan 3D 2.1 Works, which is hereby incorporated by reference into this Agreement. You must include the use restrictions referenced in these Sections 5(a) and 5(b) as an enforceable provision in any agreement (e.g., license agreement, terms of use, etc.) governing the use and/or distribution of Tencent Hunyuan 3D 2.1 Works and You must provide notice to subsequent users to whom You distribute that Tencent Hunyuan 3D 2.1 Works are subject to the use restrictions in these Sections 5(a) and 5(b).
b. You must not use the Tencent Hunyuan 3D 2.1 Works or any Output or results of the Tencent Hunyuan 3D 2.1 Works to improve any other AI model (other than Tencent Hunyuan 3D 2.1 or Model Derivatives thereof).
c. You must not use, reproduce, modify, distribute, or display the Tencent Hunyuan 3D 2.1 Works, Output or results of the Tencent Hunyuan 3D 2.1 Works outside the Territory. Any such use outside the Territory is unlicensed and unauthorized under this Agreement.
6. INTELLECTUAL PROPERTY.
a. Subject to Tencents ownership of Tencent Hunyuan 3D 2.1 Works made by or for Tencent and intellectual property rights therein, conditioned upon Your compliance with the terms and conditions of this Agreement, as between You and Tencent, You will be the owner of any derivative works and modifications of the Materials and any Model Derivatives that are made by or for You.
b. No trademark licenses are granted under this Agreement, and in connection with the Tencent Hunyuan 3D 2.1 Works, Licensee may not use any name or mark owned by or associated with Tencent or any of its affiliates, except as required for reasonable and customary use in describing and distributing the Tencent Hunyuan 3D 2.1 Works. Tencent hereby grants You a license to use “Tencent Hunyuan” (the “Mark”) in the Territory solely as required to comply with the provisions of Section 3(c), provided that You comply with any applicable laws related to trademark protection. All goodwill arising out of Your use of the Mark will inure to the benefit of Tencent.
c. If You commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any person or entity alleging that the Materials or any Output, or any portion of any of the foregoing, infringe any intellectual property or other right owned or licensable by You, then all licenses granted to You under this Agreement shall terminate as of the date such lawsuit or other proceeding is filed. You will defend, indemnify and hold harmless Us from and against any claim by any Third Party arising out of or related to Your or the Third Partys use or distribution of the Tencent Hunyuan 3D 2.1 Works.
d. Tencent claims no rights in Outputs You generate. You and Your users are solely responsible for Outputs and their subsequent uses.
7. DISCLAIMERS OF WARRANTY AND LIMITATIONS OF LIABILITY.
a. We are not obligated to support, update, provide training for, or develop any further version of the Tencent Hunyuan 3D 2.1 Works or to grant any license thereto.
b. UNLESS AND ONLY TO THE EXTENT REQUIRED BY APPLICABLE LAW, THE TENCENT HUNYUAN 3D 2.1 WORKS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES OF ANY KIND INCLUDING ANY WARRANTIES OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, COURSE OF DEALING, USAGE OF TRADE, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING, REPRODUCING, MODIFYING, PERFORMING, DISPLAYING OR DISTRIBUTING ANY OF THE TENCENT HUNYUAN 3D 2.1 WORKS OR OUTPUTS AND ASSUME ANY AND ALL RISKS ASSOCIATED WITH YOUR OR A THIRD PARTYS USE OR DISTRIBUTION OF ANY OF THE TENCENT HUNYUAN 3D 2.1 WORKS OR OUTPUTS AND YOUR EXERCISE OF RIGHTS AND PERMISSIONS UNDER THIS AGREEMENT.
c. TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL TENCENT OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, FOR ANY DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, CONSEQUENTIAL OR PUNITIVE DAMAGES, OR LOST PROFITS OF ANY KIND ARISING FROM THIS AGREEMENT OR RELATED TO ANY OF THE TENCENT HUNYUAN 3D 2.1 WORKS OR OUTPUTS, EVEN IF TENCENT OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
8. SURVIVAL AND TERMINATION.
a. The term of this Agreement shall commence upon Your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
b. We may terminate this Agreement if You breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, You must promptly delete and cease use of the Tencent Hunyuan 3D 2.1 Works. Sections 6(a), 6(c), 7 and 9 shall survive the termination of this Agreement.
9. GOVERNING LAW AND JURISDICTION.
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of the Hong Kong Special Administrative Region of the Peoples Republic of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
b. Exclusive jurisdiction and venue for any dispute arising out of or relating to this Agreement will be a court of competent jurisdiction in the Hong Kong Special Administrative Region of the Peoples Republic of China, and Tencent and Licensee consent to the exclusive jurisdiction of such court with respect to any such dispute.
EXHIBIT A
ACCEPTABLE USE POLICY
Tencent reserves the right to update this Acceptable Use Policy from time to time.
Last modified: November 5, 2024
Tencent endeavors to promote safe and fair use of its tools and features, including Tencent Hunyuan 3D 2.1. You agree not to use Tencent Hunyuan 3D 2.1 or Model Derivatives:
1. Outside the Territory;
2. In any way that violates any applicable national, federal, state, local, international or any other law or regulation;
3. To harm Yourself or others;
4. To repurpose or distribute output from Tencent Hunyuan 3D 2.1 or any Model Derivatives to harm Yourself or others;
5. To override or circumvent the safety guardrails and safeguards We have put in place;
6. For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
7. To generate or disseminate verifiably false information and/or content with the purpose of harming others or influencing elections;
8. To generate or facilitate false online engagement, including fake reviews and other means of fake online engagement;
9. To intentionally defame, disparage or otherwise harass others;
10. To generate and/or disseminate malware (including ransomware) or any other content to be used for the purpose of harming electronic systems;
11. To generate or disseminate personal identifiable information with the purpose of harming others;
12. To generate or disseminate information (including images, code, posts, articles), and place the information in any public context (including through the use of bot generated tweets), without expressly and conspicuously identifying that the information and/or content is machine generated;
13. To impersonate another individual without consent, authorization, or legal right;
14. To make high-stakes automated decisions in domains that affect an individuals safety, rights or wellbeing (e.g., law enforcement, migration, medicine/health, management of critical infrastructure, safety components of products, essential services, credit, employment, housing, education, social scoring, or insurance);
15. In a manner that violates or disrespects the social ethics and moral standards of other countries or regions;
16. To perform, facilitate, threaten, incite, plan, promote or encourage violent extremism or terrorism;
17. For any use intended to discriminate against or harm individuals or groups based on protected characteristics or categories, online or offline social behavior or known or predicted personal or personality characteristics;
18. To intentionally exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
19. For military purposes;
20. To engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or other professional practices.

View File

@ -0,0 +1,174 @@
name: "DiT: Flux large flowmatching; VAE: 1024 token length; ImageEncoder: DINO Giant; ImageSize: 518"
training:
steps: 10_0000_0000
use_amp: true
amp_type: "bf16"
base_lr: 1.e-5
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 2000 # 5000
val_check_interval: 50 # 4096
limit_val_batches: 16
dataset:
target: hy3dshape.data.dit_asl.AlignedShapeLatentModule
params:
#! Base setting
batch_size: 4
num_workers: 8
val_num_workers: 4
# Data
train_data_list: tools/mini_trainset/preprocessed
val_data_list: tools/mini_trainset/preprocessed
#! Image loading
cond_stage_key: "image" # image / text / image_text
image_size: 518
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
#! Point cloud sampling
pc_size: &pc_size 30720
pc_sharpedge_size: &pc_sharpedge_size 30720
sharpedge_label: &sharpedge_label true
return_normal: true
#! Augmentation
padding: true
model:
target: hy3dshape.models.diffusion.flow_matching_sit.Diffuser
params:
first_stage_key: "surface"
cond_stage_key: "image"
scale_by_std: false
z_scale_factor: &z_scale_factor 0.9990943042622529 # 1 / 1.0009065167661184
torch_compile: false
# ema_config:
# ema_model: LitEma
# ema_decay: 0.999
# ema_inference: false
first_stage_config:
target: hy3dshape.models.autoencoders.ShapeVAE
from_pretrained: tencent/Hunyuan3D-2.1
params:
num_latents: &num_latents 512
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
point_feats: 4
num_decoder_layers: 16
pc_size: *pc_size
pc_sharpedge_size: *pc_sharpedge_size
qkv_bias: false
qk_norm: true
scale_factor: *z_scale_factor
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
cond_stage_config:
target: hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino giant
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1536
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 24
num_channels: 3
num_hidden_layers: 40
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: true
image_size: 518
denoiser_cfg:
target: hy3dshape.models.denoisers.hunyuan3ddit.Hunyuan3DDiT
params:
ckpt_path: ~/.cache/hy3dgen/tencent/Hunyuan3D-2-1-Shape/dit/model.fp16.ckpt
input_size: *num_latents
context_in_dim: 1536
hidden_size: 1024
mlp_ratio: 4.0
num_heads: 16
depth: 16
depth_single_blocks: 32
axes_dim: [64]
theta: 10000
qkv_bias: true
use_pe: false
force_norm_fp32: true
scheduler_cfg:
transport:
target: hy3dshape.models.diffusion.transport.create_transport
params:
path_type: Linear
prediction: velocity
sampler:
target: hy3dshape.models.diffusion.transport.Sampler
params: {}
ode_params:
sampling_method: euler # dopri5 ...
num_steps: &num_steps 50
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: hy3dshape.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 50 # 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
pipeline_cfg:
target: hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline
image_processor_cfg:
target: hy3dshape.preprocessors.ImageProcessorV2
params: {}
callbacks:
logger:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
params:
step_frequency: 100 # 10000
num_samples: 1
sample_times: 1
mean: *mean
std: *std
bounds: [-1.01, -1.01, -1.01, 1.01, 1.01, 1.01]
octree_depth: 8
num_chunks: 50000
mc_level: 0.0
file_loggers:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalFixASLDiffuserLogger
params:
step_frequency: 50 # 5000
test_data_path: "tools/mini_testset/images.json"

View File

@ -0,0 +1,173 @@
name: "DiT: Flux large flowmatching; VAE: 1024 token length; ImageEncoder: DINO Giant; ImageSize: 518"
training:
steps: 10_0000_0000
use_amp: true
amp_type: "bf16"
base_lr: 1e-4
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 2000 # 5000
val_check_interval: 50 # 4096
limit_val_batches: 16
dataset:
target: hy3dshape.data.dit_asl.AlignedShapeLatentModule
params:
#! Base setting
batch_size: 2
num_workers: 8
val_num_workers: 4
# Data
train_data_list: tools/mini_trainset/preprocessed
val_data_list: tools/mini_trainset/preprocessed
#! Image loading
cond_stage_key: "image" # image / text / image_text
image_size: 518
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
#! Point cloud sampling
pc_size: &pc_size 10240
pc_sharpedge_size: &pc_sharpedge_size 10240
sharpedge_label: &sharpedge_label true
return_normal: true
#! Augmentation
padding: true
model:
target: hy3dshape.models.diffusion.flow_matching_sit.Diffuser
params:
first_stage_key: "surface"
cond_stage_key: "image"
scale_by_std: false
z_scale_factor: &z_scale_factor 0.9990943042622529 # 1 / 1.0009065167661184
torch_compile: false
# ema_config:
# ema_model: LitEma
# ema_decay: 0.999
# ema_inference: false
first_stage_config:
target: hy3dshape.models.autoencoders.ShapeVAE
from_pretrained: tencent/Hunyuan3D-2.1
params:
num_latents: &num_latents 512
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
point_feats: 4
num_decoder_layers: 16
pc_size: *pc_size
pc_sharpedge_size: *pc_sharpedge_size
qkv_bias: false
qk_norm: true
scale_factor: *z_scale_factor
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
cond_stage_config:
target: hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino giant
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1536
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 24
num_channels: 3
num_hidden_layers: 40
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: true
image_size: 518
denoiser_cfg:
target: hy3dshape.models.denoisers.hunyuan3ddit.Hunyuan3DDiT
params:
input_size: *num_latents
context_in_dim: 1536
hidden_size: 1024
mlp_ratio: 4.0
num_heads: 16
depth: 8
depth_single_blocks: 16
axes_dim: [64]
theta: 10000
qkv_bias: true
use_pe: false
force_norm_fp32: true
scheduler_cfg:
transport:
target: hy3dshape.models.diffusion.transport.create_transport
params:
path_type: Linear
prediction: velocity
sampler:
target: hy3dshape.models.diffusion.transport.Sampler
params: {}
ode_params:
sampling_method: euler # dopri5 ...
num_steps: &num_steps 50
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: hy3dshape.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 50 # 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
pipeline_cfg:
target: hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline
image_processor_cfg:
target: hy3dshape.preprocessors.ImageProcessorV2
params: {}
callbacks:
logger:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
params:
step_frequency: 100 # 10000
num_samples: 1
sample_times: 1
mean: *mean
std: *std
bounds: [-1.01, -1.01, -1.01, 1.01, 1.01, 1.01]
octree_depth: 8
num_chunks: 50000
mc_level: 0.0
file_loggers:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalFixASLDiffuserLogger
params:
step_frequency: 50 # 5000
test_data_path: "tools/mini_testset/images.json"

View File

@ -0,0 +1,180 @@
name: "DiT: Flux large flowmatching; VAE: 1024 token length; ImageEncoder: DINO Giant; ImageSize: 518"
training:
steps: 10_0000_0000
use_amp: true
amp_type: "bf16"
base_lr: 1e-5
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 2000 # 5000
val_check_interval: 50 # 4096
limit_val_batches: 16
dataset:
target: hy3dshape.data.dit_asl.AlignedShapeLatentModule
params:
#! Base setting
batch_size: 4
num_workers: 8
val_num_workers: 4
# Data
train_data_list: tools/mini_trainset/preprocessed
val_data_list: tools/mini_trainset/preprocessed
#! Image loading
cond_stage_key: "image" # image / text / image_text
image_size: 518
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
#! Point cloud sampling
pc_size: &pc_size 81920
pc_sharpedge_size: &pc_sharpedge_size 0
sharpedge_label: &sharpedge_label true
return_normal: true
#! Augmentation
padding: true
model:
target: hy3dshape.models.diffusion.flow_matching_sit.Diffuser
params:
first_stage_key: "surface"
cond_stage_key: "image"
scale_by_std: false
z_scale_factor: &z_scale_factor 1.0039506158752403
torch_compile: false
# ema_config:
# ema_model: LitEma
# ema_decay: 0.999
# ema_inference: false
first_stage_config:
target: hy3dshape.models.autoencoders.ShapeVAE
from_pretrained: tencent/Hunyuan3D-2.1
params:
num_latents: &num_latents 4096
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
num_encoder_layers: 8
num_decoder_layers: 16
qkv_bias: false
qk_norm: true
scale_factor: *z_scale_factor
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
point_feats: 4
pc_size: *pc_size
pc_sharpedge_size: *pc_sharpedge_size
cond_stage_config:
target: hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino large
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1024
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 16
num_channels: 3
num_hidden_layers: 24
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: false
image_size: 518
use_cls_token: true
denoiser_cfg:
target: hy3dshape.models.denoisers.hunyuandit.HunYuanDiTPlain
params:
input_size: *num_latents
in_channels: 64
hidden_size: 2048
context_dim: 1024
depth: 21
num_heads: 16
qk_norm: true
text_len: 1370
with_decoupled_ca: false
use_attention_pooling: false
qk_norm_type: 'rms'
qkv_bias: false
use_pos_emb: false
num_moe_layers: 6
num_experts: 8
moe_top_k: 2
scheduler_cfg:
transport:
target: hy3dshape.models.diffusion.transport.create_transport
params:
path_type: Linear
prediction: velocity
sampler:
target: hy3dshape.models.diffusion.transport.Sampler
params: {}
ode_params:
sampling_method: euler # dopri5 ...
num_steps: &num_steps 50
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: hy3dshape.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 50 # 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
pipeline_cfg:
target: hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline
image_processor_cfg:
target: hy3dshape.preprocessors.ImageProcessorV2
params: {}
callbacks:
logger:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
params:
step_frequency: 100 # 10000
num_samples: 1
sample_times: 1
mean: *mean
std: *std
bounds: [-1.01, -1.01, -1.01, 1.01, 1.01, 1.01]
octree_depth: 8
num_chunks: 50000
mc_level: 0.0
file_loggers:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalFixASLDiffuserLogger
params:
step_frequency: 50 # 5000
test_data_path: "tools/mini_testset/images.json"

View File

@ -0,0 +1,180 @@
name: "DiT: Flux large flowmatching; VAE: 1024 token length; ImageEncoder: DINO Giant; ImageSize: 518"
training:
steps: 10_0000_0000
use_amp: true
amp_type: "bf16"
base_lr: 1e-4
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 2000 # 5000
val_check_interval: 50 # 4096
limit_val_batches: 16
dataset:
target: hy3dshape.data.dit_asl.AlignedShapeLatentModule
params:
#! Base setting
batch_size: 2
num_workers: 8
val_num_workers: 4
# Data
train_data_list: tools/mini_trainset/preprocessed
val_data_list: tools/mini_trainset/preprocessed
#! Image loading
cond_stage_key: "image" # image / text / image_text
image_size: 518
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
#! Point cloud sampling
pc_size: &pc_size 81920
pc_sharpedge_size: &pc_sharpedge_size 0
sharpedge_label: &sharpedge_label true
return_normal: true
#! Augmentation
padding: true
model:
target: hy3dshape.models.diffusion.flow_matching_sit.Diffuser
params:
first_stage_key: "surface"
cond_stage_key: "image"
scale_by_std: false
z_scale_factor: &z_scale_factor 1.0039506158752403
torch_compile: false
# ema_config:
# ema_model: LitEma
# ema_decay: 0.999
# ema_inference: false
first_stage_config:
target: hy3dshape.models.autoencoders.ShapeVAE
from_pretrained: tencent/Hunyuan3D-2.1
params:
num_latents: &num_latents 4096
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
num_encoder_layers: 8
num_decoder_layers: 16
qkv_bias: false
qk_norm: true
scale_factor: *z_scale_factor
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
point_feats: 4
pc_size: *pc_size
pc_sharpedge_size: *pc_sharpedge_size
cond_stage_config:
target: hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino large
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1024
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 16
num_channels: 3
num_hidden_layers: 24
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: false
image_size: 518
use_cls_token: true
denoiser_cfg:
target: hy3dshape.models.denoisers.hunyuandit.HunYuanDiTPlain
params:
input_size: *num_latents
in_channels: 64
hidden_size: 2048
context_dim: 1024
depth: 11
num_heads: 16
qk_norm: true
text_len: 1370
with_decoupled_ca: false
use_attention_pooling: false
qk_norm_type: 'rms'
qkv_bias: false
use_pos_emb: false
num_moe_layers: 6
num_experts: 8
moe_top_k: 2
scheduler_cfg:
transport:
target: hy3dshape.models.diffusion.transport.create_transport
params:
path_type: Linear
prediction: velocity
sampler:
target: hy3dshape.models.diffusion.transport.Sampler
params: {}
ode_params:
sampling_method: euler # dopri5 ...
num_steps: &num_steps 50
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: hy3dshape.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 50 # 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
pipeline_cfg:
target: hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline
image_processor_cfg:
target: hy3dshape.preprocessors.ImageProcessorV2
params: {}
callbacks:
logger:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
params:
step_frequency: 100 # 10000
num_samples: 1
sample_times: 1
mean: *mean
std: *std
bounds: [-1.01, -1.01, -1.01, 1.01, 1.01, 1.01]
octree_depth: 8
num_chunks: 50000
mc_level: 0.0
file_loggers:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalFixASLDiffuserLogger
params:
step_frequency: 50 # 5000
test_data_path: "tools/mini_testset/images.json"

View File

@ -0,0 +1,180 @@
name: "DiT: Flux large flowmatching; VAE: 1024 token length; ImageEncoder: DINO Giant; ImageSize: 518"
training:
steps: 10_0000_0000
use_amp: true
amp_type: "bf16"
base_lr: 1e-4
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 2000 # 5000
val_check_interval: 50 # 4096
limit_val_batches: 16
dataset:
target: hy3dshape.data.dit_asl.AlignedShapeLatentModule
params:
#! Base setting
batch_size: 2
num_workers: 8
val_num_workers: 4
# Data
train_data_list: tools/mini_trainset/preprocessed
val_data_list: tools/mini_trainset/preprocessed
#! Image loading
cond_stage_key: "image" # image / text / image_text
image_size: 518
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
#! Point cloud sampling
pc_size: &pc_size 81920
pc_sharpedge_size: &pc_sharpedge_size 0
sharpedge_label: &sharpedge_label true
return_normal: true
#! Augmentation
padding: true
model:
target: hy3dshape.models.diffusion.flow_matching_sit.Diffuser
params:
first_stage_key: "surface"
cond_stage_key: "image"
scale_by_std: false
z_scale_factor: &z_scale_factor 1.0039506158752403
torch_compile: false
# ema_config:
# ema_model: LitEma
# ema_decay: 0.999
# ema_inference: false
first_stage_config:
target: hy3dshape.models.autoencoders.ShapeVAE
from_pretrained: tencent/Hunyuan3D-2.1
params:
num_latents: &num_latents 512
embed_dim: 64
num_freqs: 8
include_pi: false
heads: 16
width: 1024
num_encoder_layers: 8
num_decoder_layers: 16
qkv_bias: false
qk_norm: true
scale_factor: *z_scale_factor
geo_decoder_mlp_expand_ratio: 4
geo_decoder_downsample_ratio: 1
geo_decoder_ln_post: true
point_feats: 4
pc_size: *pc_size
pc_sharpedge_size: *pc_sharpedge_size
cond_stage_config:
target: hy3dshape.models.conditioner.SingleImageEncoder
params:
main_image_encoder:
type: DinoImageEncoder # dino large
kwargs:
config:
attention_probs_dropout_prob: 0.0
drop_path_rate: 0.0
hidden_act: gelu
hidden_dropout_prob: 0.0
hidden_size: 1024
image_size: 518
initializer_range: 0.02
layer_norm_eps: 1.e-6
layerscale_value: 1.0
mlp_ratio: 4
model_type: dinov2
num_attention_heads: 16
num_channels: 3
num_hidden_layers: 24
patch_size: 14
qkv_bias: true
torch_dtype: float32
use_swiglu_ffn: false
image_size: 518
use_cls_token: true
denoiser_cfg:
target: hy3dshape.models.denoisers.hunyuandit.HunYuanDiTPlain
params:
input_size: *num_latents
in_channels: 64
hidden_size: 768
context_dim: 1024
depth: 6
num_heads: 12
qk_norm: true
text_len: 1370
with_decoupled_ca: false
use_attention_pooling: false
qk_norm_type: 'rms'
qkv_bias: false
use_pos_emb: false
num_moe_layers: 3
num_experts: 4
moe_top_k: 2
scheduler_cfg:
transport:
target: hy3dshape.models.diffusion.transport.create_transport
params:
path_type: Linear
prediction: velocity
sampler:
target: hy3dshape.models.diffusion.transport.Sampler
params: {}
ode_params:
sampling_method: euler # dopri5 ...
num_steps: &num_steps 50
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: hy3dshape.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 50 # 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
pipeline_cfg:
target: hy3dshape.pipelines.Hunyuan3DDiTFlowMatchingPipeline
image_processor_cfg:
target: hy3dshape.preprocessors.ImageProcessorV2
params: {}
callbacks:
logger:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
params:
step_frequency: 100 # 10000
num_samples: 1
sample_times: 1
mean: *mean
std: *std
bounds: [-1.01, -1.01, -1.01, 1.01, 1.01, 1.01]
octree_depth: 8
num_chunks: 50000
mc_level: 0.0
file_loggers:
target: hy3dshape.utils.trainings.mesh_log_callback.ImageConditionalFixASLDiffuserLogger
params:
step_frequency: 50 # 5000
test_data_path: "tools/mini_testset/images.json"

View File

@ -0,0 +1,17 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from .pipelines import Hunyuan3DDiTPipeline, Hunyuan3DDiTFlowMatchingPipeline
from .postprocessors import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier
from .preprocessors import ImageProcessorV2, IMAGE_PROCESSORS, DEFAULT_IMAGEPROCESSOR

View File

@ -0,0 +1,384 @@
# -*- coding: utf-8 -*-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import io
import sys
import time
import random
import traceback
from typing import Optional, Union, List, Tuple, Dict
import json
import glob
import cv2
import numpy as np
import trimesh
import torch
import torchvision.transforms as transforms
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities import rank_zero_info
from .utils import worker_init_fn, pytorch_worker_seed, make_seed
class ResampledShards(torch.utils.data.dataset.IterableDataset):
def __init__(self, datalist, nshards=sys.maxsize, worker_seed=None, deterministic=False):
super().__init__()
self.datalist = datalist
self.nshards = nshards
# If no worker_seed provided, use pytorch_worker_seed function; else use given seed
self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed
self.deterministic = deterministic
self.epoch = -1
def __iter__(self):
self.epoch += 1
if self.deterministic:
seed = make_seed(self.worker_seed(), self.epoch)
else:
seed = make_seed(self.worker_seed(), self.epoch,
os.getpid(), time.time_ns(), os.urandom(4))
self.rng = random.Random(seed)
for _ in range(self.nshards):
index = self.rng.randint(0, len(self.datalist) - 1)
yield self.datalist[index]
def read_npz(data):
# Load a numpy .npz file from a file path or file-like object
# The commented line shows how to load from bytes in memory
# return np.load(io.BytesIO(data))
return np.load(data)
def read_json(path):
# Read and parse a JSON file from the given file path
with open(path, 'r', encoding='utf-8') as file:
data = json.load(file)
return data
def padding(image, mask, center=True, padding_ratio_range=[1.15, 1.15]):
"""
Pad the input image and mask to a square shape with padding ratio.
Args:
image (np.ndarray): Input image array of shape (H, W, C).
mask (np.ndarray): Corresponding mask array of shape (H, W).
center (bool): Whether to center the original image in the padded output.
padding_ratio_range (list): Range [min, max] to randomly select padding ratio.
Returns:
newimg (np.ndarray): Padded image of shape (resize_side, resize_side, 3).
newmask (np.ndarray): Padded mask of shape (resize_side, resize_side).
"""
h, w = image.shape[:2]
max_side = max(h, w)
# Select padding ratio either fixed or randomly within the given range
if padding_ratio_range[0] == padding_ratio_range[1]:
padding_ratio = padding_ratio_range[0]
else:
padding_ratio = random.uniform(padding_ratio_range[0], padding_ratio_range[1])
resize_side = int(max_side * padding_ratio)
# resize_side = int(max_side * 1.15)
pad_h = resize_side - h
pad_w = resize_side - w
if center:
start_h = pad_h // 2
else:
start_h = pad_h - resize_side // 20
start_w = pad_w // 2
# Create new white image and black mask with padded size
newimg = np.ones((resize_side, resize_side, 3), dtype=np.uint8) * 255
newmask = np.zeros((resize_side, resize_side), dtype=np.uint8)
# Place original image and mask into the padded canvas
newimg[start_h:start_h + h, start_w:start_w + w] = image
newmask[start_h:start_h + h, start_w:start_w + w] = mask
return newimg, newmask
def viz_pc(surface, normal, image_input, name):
image_input = image_input.cpu().numpy()
image_input = image_input.transpose(1, 2, 0) * 0.5 + 0.5
image_input = (image_input * 255).astype(np.uint8)
cv2.imwrite(name + '.png', cv2.cvtColor(image_input, cv2.COLOR_RGB2BGR))
surface = surface.cpu().numpy()
normal = normal.cpu().numpy()
surface_mesh = trimesh.Trimesh(surface, vertex_colors=(normal + 1) / 2)
surface_mesh.export(name + '.obj')
class AlignedShapeLatentDataset(torch.utils.data.dataset.IterableDataset):
def __init__(
self,
data_list: str = None,
cond_stage_key: str = "image",
image_transform = None,
pc_size: int = 2048,
pc_sharpedge_size: int = 2048,
sharpedge_label: bool = False,
return_normal: bool = False,
deterministic = False,
worker_seed = None,
padding = True,
padding_ratio_range=[1.15, 1.15]
):
super().__init__()
if isinstance(data_list, str) and data_list.endswith('.json'):
self.data_list = read_json(data_list_json)
elif isinstance(data_list, str) and os.path.isdir(data_list):
self.data_list = glob.glob(data_list + '/*')
else:
self.data_list = data_list
assert isinstance(self.data_list, list)
self.rng = random.Random(0)
self.cond_stage_key = cond_stage_key
self.image_transform = image_transform
self.pc_size = pc_size
self.pc_sharpedge_size = pc_sharpedge_size
self.sharpedge_label = sharpedge_label
self.return_normal = return_normal
self.padding = padding
self.padding_ratio_range = padding_ratio_range
rank_zero_info(f'*' * 50)
rank_zero_info(f'Dataset Infos:')
rank_zero_info(f'# of 3D file: {len(self.data_list)}')
rank_zero_info(f'# of Surface Points: {self.pc_size}')
rank_zero_info(f'# of Sharpedge Surface Points: {self.pc_sharpedge_size}')
rank_zero_info(f'Using sharp edge label: {self.sharpedge_label}')
rank_zero_info(f'*' * 50)
def load_surface_sdf_points(self, rng, random_surface, sharpedge_surface):
surface_normal = []
if self.pc_size > 0:
ind = rng.choice(random_surface.shape[0], self.pc_size, replace=False)
random_surface = random_surface[ind]
if self.sharpedge_label:
sharpedge_label = np.zeros((self.pc_size, 1))
random_surface = np.concatenate((random_surface, sharpedge_label), axis=1)
surface_normal.append(random_surface)
if self.pc_sharpedge_size > 0:
ind_sharpedge = rng.choice(sharpedge_surface.shape[0], self.pc_sharpedge_size, replace=False)
sharpedge_surface = sharpedge_surface[ind_sharpedge]
if self.sharpedge_label:
sharpedge_label = np.ones((self.pc_sharpedge_size, 1))
sharpedge_surface = np.concatenate((sharpedge_surface, sharpedge_label), axis=1)
surface_normal.append(sharpedge_surface)
surface_normal = np.concatenate(surface_normal, axis=0)
surface_normal = torch.FloatTensor(surface_normal)
surface = surface_normal[:, 0:3]
normal = surface_normal[:, 3:6]
assert surface.shape[0] == self.pc_size + self.pc_sharpedge_size
geo_points = 0.0
normal = torch.nn.functional.normalize(normal, p=2, dim=1)
if self.return_normal:
surface = torch.cat([surface, normal], dim=-1)
if self.sharpedge_label:
surface = torch.cat([surface, surface_normal[:, -1:]], dim=-1)
return surface, geo_points
def load_render(self, imgs_path):
imgs_choice = self.rng.sample(imgs_path, 1)
images, masks = [], []
for image_path in imgs_choice:
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
assert image.shape[2] == 4
alpha = image[:, :, 3:4].astype(np.float32) / 255
forground = image[:, :, :3]
background = np.ones_like(forground) * 255
img_new = forground * alpha + background * (1 - alpha)
image = img_new.astype(np.uint8)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = (alpha[:, :, 0] * 255).astype(np.uint8)
if self.padding:
h, w = image.shape[:2]
binary = mask > 0.3
non_zero_coords = np.argwhere(binary)
x_min, y_min = non_zero_coords.min(axis=0)
x_max, y_max = non_zero_coords.max(axis=0)
image, mask = padding(
image[max(x_min - 5, 0):min(x_max + 5, h), max(y_min - 5, 0):min(y_max + 5, w)],
mask[max(x_min - 5, 0):min(x_max + 5, h), max(y_min - 5, 0):min(y_max + 5, w)],
center=True, padding_ratio_range=self.padding_ratio_range)
if self.image_transform:
image = self.image_transform(image)
mask = np.stack((mask, mask, mask), axis=-1)
mask = self.image_transform(mask)
images.append(image)
masks.append(mask)
images = torch.cat(images, dim=0)
masks = torch.cat(masks, dim=0)[:1, ...]
return images, masks
def decode(self, item):
uid = item.split('/')[-1]
render_img_paths = [os.path.join(item, f'render_cond/{i:03d}.png') for i in range(24)]
# transforms_json_path = os.path.join(item, 'render_cond/transforms.json')
surface_npz_path = os.path.join(item, f'geo_data/{uid}_surface.npz')
# sdf_npz_path = os.path.join(item, f'geo_data/{uid}_sdf.npz')
# watertight_obj_path = os.path.join(item, f'geo_data/{uid}_watertight.obj')
sample = {}
sample["image"] = render_img_paths
surface_data = read_npz(surface_npz_path)
sample["random_surface"] = surface_data['random_surface']
sample["sharpedge_surface"] = surface_data['sharp_surface']
return sample
def transform(self, sample):
rng = np.random.default_rng()
random_surface = sample.get("random_surface", 0)
sharpedge_surface = sample.get("sharpedge_surface", 0)
image_input, mask_input = self.load_render(sample['image'])
surface, geo_points = self.load_surface_sdf_points(rng, random_surface, sharpedge_surface)
sample = {
"surface": surface,
"geo_points": geo_points,
"image": image_input,
"mask": mask_input,
}
return sample
def __iter__(self):
total_num = 0
failed_num = 0
for data in ResampledShards(self.data_list):
total_num += 1
if total_num % 1000 == 0:
print(f"Current failure rate of data loading:")
print(f"{failed_num}/{total_num}={failed_num/total_num}")
try:
sample = self.decode(data)
sample = self.transform(sample)
except Exception as err:
print(err)
failed_num += 1
continue
yield sample
class AlignedShapeLatentModule(LightningDataModule):
def __init__(
self,
batch_size: int = 1,
num_workers: int = 4,
val_num_workers: int = 2,
train_data_list: str = None,
val_data_list: str = None,
cond_stage_key: str = "all",
image_size: int = 224,
mean: Union[List[float], Tuple[float]] = (0.485, 0.456, 0.406),
std: Union[List[float], Tuple[float]] = (0.229, 0.224, 0.225),
pc_size: int = 2048,
pc_sharpedge_size: int = 2048,
sharpedge_label: bool = False,
return_normal: bool = False,
padding = True,
padding_ratio_range=[1.15, 1.15]
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.val_num_workers = val_num_workers
self.train_data_list = train_data_list
self.val_data_list = val_data_list
self.cond_stage_key = cond_stage_key
self.image_size = image_size
self.mean = mean
self.std = std
self.train_image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(self.image_size),
transforms.Normalize(mean=self.mean, std=self.std)])
self.val_image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(self.image_size),
transforms.Normalize(mean=self.mean, std=self.std)])
self.pc_size = pc_size
self.pc_sharpedge_size = pc_sharpedge_size
self.sharpedge_label = sharpedge_label
self.return_normal = return_normal
self.padding = padding
self.padding_ratio_range = padding_ratio_range
def train_dataloader(self):
asl_params = {
"data_list": self.train_data_list,
"cond_stage_key": self.cond_stage_key,
"image_transform": self.train_image_transform,
"pc_size": self.pc_size,
"pc_sharpedge_size": self.pc_sharpedge_size,
"sharpedge_label": self.sharpedge_label,
"return_normal": self.return_normal,
"padding": self.padding,
"padding_ratio_range": self.padding_ratio_range
}
dataset = AlignedShapeLatentDataset(**asl_params)
return torch.utils.data.DataLoader(
dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
drop_last=True,
worker_init_fn=worker_init_fn,
)
def val_dataloader(self):
asl_params = {
"data_list": self.val_data_list,
"cond_stage_key": self.cond_stage_key,
"image_transform": self.val_image_transform,
"pc_size": self.pc_size,
"pc_sharpedge_size": self.pc_sharpedge_size,
"sharpedge_label": self.sharpedge_label,
"return_normal": self.return_normal,
"padding": self.padding,
"padding_ratio_range": self.padding_ratio_range
}
dataset = AlignedShapeLatentDataset(**asl_params)
return torch.utils.data.DataLoader(
dataset,
batch_size=self.batch_size,
num_workers=self.val_num_workers,
pin_memory=True,
drop_last=True,
worker_init_fn=worker_init_fn,
)

View File

@ -0,0 +1,186 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved.
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
"""Miscellaneous utility functions."""
import importlib
import itertools as itt
import os
import re
import sys
from typing import Any, Callable, Iterator, Union
import torch
import numpy as np
def make_seed(*args):
seed = 0
for arg in args:
seed = (seed * 31 + hash(arg)) & 0x7FFFFFFF
return seed
class PipelineStage:
def invoke(self, *args, **kw):
raise NotImplementedError
def identity(x: Any) -> Any:
"""Return the argument as is."""
return x
def safe_eval(s: str, expr: str = "{}"):
"""Evaluate the given expression more safely."""
if re.sub("[^A-Za-z0-9_]", "", s) != s:
raise ValueError(f"safe_eval: illegal characters in: '{s}'")
return eval(expr.format(s))
def lookup_sym(sym: str, modules: list):
"""Look up a symbol in a list of modules."""
for mname in modules:
module = importlib.import_module(mname, package="webdataset")
result = getattr(module, sym, None)
if result is not None:
return result
return None
def repeatedly0(
loader: Iterator, nepochs: int = sys.maxsize, nbatches: int = sys.maxsize
):
"""Repeatedly returns batches from a DataLoader."""
for _ in range(nepochs):
yield from itt.islice(loader, nbatches)
def guess_batchsize(batch: Union[tuple, list]):
"""Guess the batch size by looking at the length of the first element in a tuple."""
return len(batch[0])
def repeatedly(
source: Iterator,
nepochs: int = None,
nbatches: int = None,
nsamples: int = None,
batchsize: Callable[..., int] = guess_batchsize,
):
"""Repeatedly yield samples from an iterator."""
epoch = 0
batch = 0
total = 0
while True:
for sample in source:
yield sample
batch += 1
if nbatches is not None and batch >= nbatches:
return
if nsamples is not None:
total += guess_batchsize(sample)
if total >= nsamples:
return
epoch += 1
if nepochs is not None and epoch >= nepochs:
return
def pytorch_worker_info(group=None): # sourcery skip: use-contextlib-suppress
"""Return node and worker info for PyTorch and some distributed environments."""
rank = 0
world_size = 1
worker = 0
num_workers = 1
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
else:
try:
import torch.distributed
if torch.distributed.is_available() and torch.distributed.is_initialized():
group = group or torch.distributed.group.WORLD
rank = torch.distributed.get_rank(group=group)
world_size = torch.distributed.get_world_size(group=group)
except ModuleNotFoundError:
pass
if "WORKER" in os.environ and "NUM_WORKERS" in os.environ:
worker = int(os.environ["WORKER"])
num_workers = int(os.environ["NUM_WORKERS"])
else:
try:
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None:
worker = worker_info.id
num_workers = worker_info.num_workers
except ModuleNotFoundError:
pass
return rank, world_size, worker, num_workers
def pytorch_worker_seed(group=None):
"""Compute a distinct, deterministic RNG seed for each worker and node."""
rank, world_size, worker, num_workers = pytorch_worker_info(group=group)
return rank * 1000 + worker
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
worker_id = worker_info.id
# dataset = worker_info.dataset
# split_size = dataset.num_records // worker_info.num_workers
# # reset num_records to the true number to retain reliable length information
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
# current_id = np.random.choice(len(np.random.get_state()[1]), 1)
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
return np.random.seed(np.random.get_state()[1][0] + worker_id)
def collation_fn(samples, combine_tensors=True, combine_scalars=True):
"""
Args:
samples (list[dict]):
combine_tensors:
combine_scalars:
Returns:
"""
result = {}
keys = samples[0].keys()
for key in keys:
result[key] = []
for sample in samples:
for key in keys:
val = sample[key]
result[key].append(val)
for key in keys:
val_list = result[key]
if isinstance(val_list[0], (int, float)):
if combine_scalars:
result[key] = np.array(result[key])
elif isinstance(val_list[0], torch.Tensor):
if combine_tensors:
result[key] = torch.stack(val_list)
elif isinstance(val_list[0], np.ndarray):
if combine_tensors:
result[key] = np.stack(val_list)
return result

View File

@ -0,0 +1,28 @@
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from .autoencoders import ShapeVAE
from .conditioner import DualImageEncoder, SingleImageEncoder, DinoImageEncoder, CLIPImageEncoder
from .denoisers import Hunyuan3DDiT

View File

@ -0,0 +1,20 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from .attention_blocks import CrossAttentionDecoder
from .attention_processors import FlashVDMCrossAttentionProcessor, CrossAttentionProcessor, \
FlashVDMTopMCrossAttentionProcessor
from .model import ShapeVAE, VectsetVAE
from .surface_extractors import SurfaceExtractors, MCSurfaceExtractor, DMCSurfaceExtractor, Latent2MeshOutput
from .volume_decoders import HierarchicalVolumeDecoding, FlashVDMVolumeDecoding, VanillaVolumeDecoder

View File

@ -0,0 +1,716 @@
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
from typing import Optional, Union, List
import torch
import torch.nn as nn
from einops import rearrange
from torch import Tensor
from .attention_processors import CrossAttentionProcessor
from ...utils import logger
scaled_dot_product_attention = nn.functional.scaled_dot_product_attention
if os.environ.get('USE_SAGEATTN', '0') == '1':
try:
from sageattention import sageattn
except ImportError:
raise ImportError('Please install the package "sageattention" to use this USE_SAGEATTN.')
scaled_dot_product_attention = sageattn
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
[
sin(x[..., i]),
sin(f_1*x[..., i]),
sin(f_2*x[..., i]),
...
sin(f_N * x[..., i]),
cos(x[..., i]),
cos(f_1*x[..., i]),
cos(f_2*x[..., i]),
...
cos(f_N * x[..., i]),
x[..., i] # only present if include_input is True.
], here f_i is the frequency.
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
Args:
num_freqs (int): the number of frequencies, default is 6;
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
input_dim (int): the input dimension, default is 3;
include_input (bool): include the input tensor or not, default is True.
Attributes:
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
otherwise, it is input_dim * num_freqs * 2.
"""
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
"""The initialization"""
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Forward process.
Args:
x: tensor of shape [..., dim]
Returns:
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
where temp is 1 if include_input is True and 0 otherwise.
"""
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if self.drop_prob == 0. or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
def extra_repr(self):
return f'drop_prob={round(self.drop_prob, 3):0.3f}'
class MLP(nn.Module):
def __init__(
self, *,
width: int,
expand_ratio: int = 4,
output_width: int = None,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * expand_ratio)
self.c_proj = nn.Linear(width * expand_ratio, output_width if output_width is not None else width)
self.gelu = nn.GELU()
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_data: Optional[int] = None,
width=None,
qk_norm=False,
norm_layer=nn.LayerNorm
):
super().__init__()
self.heads = heads
self.n_data = n_data
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool = True,
n_data: Optional[int] = None,
data_width: Optional[int] = None,
norm_layer=nn.LayerNorm,
qk_norm: bool = False,
kv_cache: bool = False,
):
super().__init__()
self.n_data = n_data
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = nn.Linear(width, width, bias=qkv_bias)
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadCrossAttention(
heads=heads,
n_data=n_data,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.kv_cache = kv_cache
self.data = None
def forward(self, x, data):
x = self.c_q(x)
if self.kv_cache:
if self.data is None:
self.data = self.c_kv(data)
logger.info('Save kv cache,this should be called only once for one mesh')
data = self.data
else:
data = self.c_kv(data)
x = self.attention(x, data)
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
n_data: Optional[int] = None,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
data_width: Optional[int] = None,
qkv_bias: bool = True,
norm_layer=nn.LayerNorm,
qk_norm: bool = False
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
n_data=n_data,
width=width,
heads=heads,
data_width=data_width,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6)
self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, expand_ratio=mlp_expand_ratio)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x
class QKVMultiheadAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_ctx: int,
width=None,
qk_norm=False,
norm_layer=nn.LayerNorm
):
super().__init__()
self.heads = heads
self.n_ctx = n_ctx
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
qkv_bias: bool,
norm_layer=nn.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(
heads=heads,
n_ctx=n_ctx,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.drop_path(self.c_proj(x))
return x
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
qkv_bias: bool = True,
norm_layer=nn.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0,
):
super().__init__()
self.attn = MultiheadAttention(
n_ctx=n_ctx,
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, drop_path_rate=drop_path_rate)
self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6)
def forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
layers: int,
heads: int,
qkv_bias: bool = True,
norm_layer=nn.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
n_ctx=n_ctx,
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
class CrossAttentionDecoder(nn.Module):
def __init__(
self,
*,
num_latents: int,
out_channels: int,
fourier_embedder: FourierEmbedder,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
downsample_ratio: int = 1,
enable_ln_post: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary"
):
super().__init__()
self.enable_ln_post = enable_ln_post
self.fourier_embedder = fourier_embedder
self.downsample_ratio = downsample_ratio
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = nn.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
n_data=num_latents,
width=width,
mlp_expand_ratio=mlp_expand_ratio,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm
)
if self.enable_ln_post:
self.ln_post = nn.LayerNorm(width)
self.output_proj = nn.Linear(width, out_channels)
self.label_type = label_type
self.count = 0
def set_cross_attention_processor(self, processor):
self.cross_attn_decoder.attn.attention.attn_processor = processor
def set_default_cross_attention_processor(self):
self.cross_attn_decoder.attn.attention.attn_processor = CrossAttentionProcessor
def forward(self, queries=None, query_embeddings=None, latents=None):
if query_embeddings is None:
query_embeddings = self.query_proj(self.fourier_embedder(queries).to(latents.dtype))
self.count += query_embeddings.shape[1]
if self.downsample_ratio != 1:
latents = self.latents_proj(latents)
x = self.cross_attn_decoder(query_embeddings, latents)
if self.enable_ln_post:
x = self.ln_post(x)
occ = self.output_proj(x)
return occ
def fps(
src: torch.Tensor,
batch: Optional[Tensor] = None,
ratio: Optional[Union[Tensor, float]] = None,
random_start: bool = True,
batch_size: Optional[int] = None,
ptr: Optional[Union[Tensor, List[int]]] = None,
):
src = src.float()
from torch_cluster import fps as fps_fn
output = fps_fn(src, batch, ratio, random_start, batch_size, ptr)
return output
class PointCrossAttentionEncoder(nn.Module):
def __init__(
self, *,
num_latents: int,
downsample_ratio: float,
pc_size: int,
pc_sharpedge_size: int,
fourier_embedder: FourierEmbedder,
point_feats: int,
width: int,
heads: int,
layers: int,
normal_pe: bool = False,
qkv_bias: bool = True,
use_ln_post: bool = False,
use_checkpoint: bool = False,
qk_norm: bool = False
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.downsample_ratio = downsample_ratio
self.point_feats = point_feats
self.normal_pe = normal_pe
if pc_sharpedge_size == 0:
print(
f'PointCrossAttentionEncoder INFO: pc_sharpedge_size is not given, using pc_size as pc_sharpedge_size')
else:
print(
f'PointCrossAttentionEncoder INFO: pc_sharpedge_size is given, using pc_size={pc_size}, pc_sharpedge_size={pc_sharpedge_size}')
self.pc_size = pc_size
self.pc_sharpedge_size = pc_sharpedge_size
self.fourier_embedder = fourier_embedder
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width=width,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm
)
self.self_attn = None
if layers > 0:
self.self_attn = Transformer(
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def sample_points_and_latents(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
B, N, D = pc.shape
num_pts = self.num_latents * self.downsample_ratio
# Compute number of latents
num_latents = int(num_pts / self.downsample_ratio)
# Compute the number of random and sharpedge latents
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
num_sharpedge_query = num_latents - num_random_query
# Split random and sharpedge surface points
random_pc, sharpedge_pc = torch.split(pc, [self.pc_size, self.pc_sharpedge_size], dim=1)
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
assert sharpedge_pc.shape[
1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
# Randomly select random surface points and random query points
input_random_pc_size = int(num_random_query * self.downsample_ratio)
random_query_ratio = num_random_query / input_random_pc_size
idx_random_pc = torch.randperm(random_pc.shape[1], device=random_pc.device)[:input_random_pc_size]
input_random_pc = random_pc[:, idx_random_pc, :]
flatten_input_random_pc = input_random_pc.view(B * input_random_pc_size, D)
N_down = int(flatten_input_random_pc.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query_random = fps(flatten_input_random_pc, batch_down, ratio=random_query_ratio)
query_random_pc = flatten_input_random_pc[idx_query_random].view(B, -1, D)
# Randomly select sharpedge surface points and sharpedge query points
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
if input_sharpedge_pc_size == 0:
input_sharpedge_pc = torch.zeros(B, 0, D, dtype=input_random_pc.dtype).to(pc.device)
query_sharpedge_pc = torch.zeros(B, 0, D, dtype=query_random_pc.dtype).to(pc.device)
else:
sharpedge_query_ratio = num_sharpedge_query / input_sharpedge_pc_size
idx_sharpedge_pc = torch.randperm(sharpedge_pc.shape[1], device=sharpedge_pc.device)[
:input_sharpedge_pc_size]
input_sharpedge_pc = sharpedge_pc[:, idx_sharpedge_pc, :]
flatten_input_sharpedge_surface_points = input_sharpedge_pc.view(B * input_sharpedge_pc_size, D)
N_down = int(flatten_input_sharpedge_surface_points.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query_sharpedge = fps(flatten_input_sharpedge_surface_points, batch_down, ratio=sharpedge_query_ratio)
query_sharpedge_pc = flatten_input_sharpedge_surface_points[idx_query_sharpedge].view(B, -1, D)
# Concatenate random and sharpedge surface points and query points
query_pc = torch.cat([query_random_pc, query_sharpedge_pc], dim=1)
input_pc = torch.cat([input_random_pc, input_sharpedge_pc], dim=1)
# PE
query = self.fourier_embedder(query_pc)
data = self.fourier_embedder(input_pc)
# Concat normal if given
if self.point_feats != 0:
random_surface_feats, sharpedge_surface_feats = torch.split(feats, [self.pc_size, self.pc_sharpedge_size],
dim=1)
input_random_surface_feats = random_surface_feats[:, idx_random_pc, :]
flatten_input_random_surface_feats = input_random_surface_feats.view(B * input_random_pc_size, -1)
query_random_feats = flatten_input_random_surface_feats[idx_query_random].view(B, -1,
flatten_input_random_surface_feats.shape[
-1])
if input_sharpedge_pc_size == 0:
input_sharpedge_surface_feats = torch.zeros(B, 0, self.point_feats,
dtype=input_random_surface_feats.dtype).to(pc.device)
query_sharpedge_feats = torch.zeros(B, 0, self.point_feats, dtype=query_random_feats.dtype).to(
pc.device)
else:
input_sharpedge_surface_feats = sharpedge_surface_feats[:, idx_sharpedge_pc, :]
flatten_input_sharpedge_surface_feats = input_sharpedge_surface_feats.view(B * input_sharpedge_pc_size,
-1)
query_sharpedge_feats = flatten_input_sharpedge_surface_feats[idx_query_sharpedge].view(B, -1,
flatten_input_sharpedge_surface_feats.shape[
-1])
query_feats = torch.cat([query_random_feats, query_sharpedge_feats], dim=1)
input_feats = torch.cat([input_random_surface_feats, input_sharpedge_surface_feats], dim=1)
if self.normal_pe:
query_normal_pe = self.fourier_embedder(query_feats[..., :3])
input_normal_pe = self.fourier_embedder(input_feats[..., :3])
query_feats = torch.cat([query_normal_pe, query_feats[..., 3:]], dim=-1)
input_feats = torch.cat([input_normal_pe, input_feats[..., 3:]], dim=-1)
query = torch.cat([query, query_feats], dim=-1)
data = torch.cat([data, input_feats], dim=-1)
if input_sharpedge_pc_size == 0:
query_sharpedge_pc = torch.zeros(B, 1, D).to(pc.device)
input_sharpedge_pc = torch.zeros(B, 1, D).to(pc.device)
# print(f'query_pc: {query_pc.shape}')
# print(f'input_pc: {input_pc.shape}')
# print(f'query_random_pc: {query_random_pc.shape}')
# print(f'input_random_pc: {input_random_pc.shape}')
# print(f'query_sharpedge_pc: {query_sharpedge_pc.shape}')
# print(f'input_sharpedge_pc: {input_sharpedge_pc.shape}')
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1]), [query_pc, input_pc,
query_random_pc, input_random_pc,
query_sharpedge_pc,
input_sharpedge_pc]
def forward(self, pc, feats):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
"""
query, data, pc_infos = self.sample_points_and_latents(pc, feats)
query = self.input_proj(query)
query = query
data = self.input_proj(data)
data = data
latents = self.cross_attn(query, data)
if self.self_attn is not None:
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents, pc_infos

View File

@ -0,0 +1,96 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import torch
import torch.nn.functional as F
scaled_dot_product_attention = F.scaled_dot_product_attention
if os.environ.get('CA_USE_SAGEATTN', '0') == '1':
try:
from sageattention import sageattn
except ImportError:
raise ImportError('Please install the package "sageattention" to use this USE_SAGEATTN.')
scaled_dot_product_attention = sageattn
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = scaled_dot_product_attention(q, k, v)
return out
class FlashVDMCrossAttentionProcessor:
def __init__(self, topk=None):
self.topk = topk
def __call__(self, attn, q, k, v):
if k.shape[-2] == 3072:
topk = 1024
elif k.shape[-2] == 512:
topk = 256
else:
topk = k.shape[-2] // 3
if self.topk is True:
q1 = q[:, :, ::100, :]
sim = q1 @ k.transpose(-1, -2)
sim = torch.mean(sim, -2)
topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1)
topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1])
v0 = torch.gather(v, dim=-2, index=topk_ind)
k0 = torch.gather(k, dim=-2, index=topk_ind)
out = scaled_dot_product_attention(q, k0, v0)
elif self.topk is False:
out = scaled_dot_product_attention(q, k, v)
else:
idx, counts = self.topk
start = 0
outs = []
for grid_coord, count in zip(idx, counts):
end = start + count
q_chunk = q[:, :, start:end, :]
k0, v0 = self.select_topkv(q_chunk, k, v, topk)
out = scaled_dot_product_attention(q_chunk, k0, v0)
outs.append(out)
start += count
out = torch.cat(outs, dim=-2)
self.topk = False
return out
def select_topkv(self, q_chunk, k, v, topk):
q1 = q_chunk[:, :, ::50, :]
sim = q1 @ k.transpose(-1, -2)
sim = torch.mean(sim, -2)
topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1)
topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1])
v0 = torch.gather(v, dim=-2, index=topk_ind)
k0 = torch.gather(k, dim=-2, index=topk_ind)
return k0, v0
class FlashVDMTopMCrossAttentionProcessor(FlashVDMCrossAttentionProcessor):
def select_topkv(self, q_chunk, k, v, topk):
q1 = q_chunk[:, :, ::30, :]
sim = q1 @ k.transpose(-1, -2)
# sim = sim.to(torch.float32)
sim = sim.softmax(-1)
sim = torch.mean(sim, 1)
activated_token = torch.where(sim > 1e-6)[2]
index = torch.unique(activated_token, return_counts=True)[0].unsqueeze(0).unsqueeze(0).unsqueeze(-1)
index = index.expand(-1, v.shape[1], -1, v.shape[-1])
v0 = torch.gather(v, dim=-2, index=index)
k0 = torch.gather(k, dim=-2, index=index)
return k0, v0

View File

@ -0,0 +1,339 @@
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
from typing import Union, List
import numpy as np
import torch
import torch.nn as nn
import yaml
from .attention_blocks import FourierEmbedder, Transformer, CrossAttentionDecoder, PointCrossAttentionEncoder
from .surface_extractors import MCSurfaceExtractor, SurfaceExtractors
from .volume_decoders import VanillaVolumeDecoder, FlashVDMVolumeDecoding, HierarchicalVolumeDecoding
from ...utils import logger, synchronize_timer, smart_load_model
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
"""
Initialize a diagonal Gaussian distribution with mean and log-variance parameters.
Args:
parameters (Union[torch.Tensor, List[torch.Tensor]]):
Either a single tensor containing concatenated mean and log-variance along `feat_dim`,
or a list of two tensors [mean, logvar].
deterministic (bool, optional): If True, the distribution is deterministic (zero variance).
Default is False. feat_dim (int, optional): Dimension along which mean and logvar are
concatenated if parameters is a single tensor. Default is 1.
"""
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
def sample(self):
"""
Sample from the diagonal Gaussian distribution.
Returns:
torch.Tensor: A sample tensor with the same shape as the mean.
"""
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2, 3)):
"""
Compute the Kullback-Leibler (KL) divergence between this distribution and another.
If `other` is None, compute KL divergence to a standard normal distribution N(0, I).
Args:
other (DiagonalGaussianDistribution, optional): Another diagonal Gaussian distribution.
dims (tuple, optional): Dimensions along which to compute the mean KL divergence.
Default is (1, 2, 3).
Returns:
torch.Tensor: The mean KL divergence value.
"""
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=dims)
def nll(self, sample, dims=(1, 2, 3)):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
class VectsetVAE(nn.Module):
@classmethod
@synchronize_timer('VectsetVAE Model Loading')
def from_single_file(
cls,
ckpt_path,
config_path,
device='cuda',
dtype=torch.float16,
use_safetensors=None,
**kwargs,
):
# load config
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# load ckpt
if use_safetensors:
ckpt_path = ckpt_path.replace('.ckpt', '.safetensors')
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Model file {ckpt_path} not found")
logger.info(f"Loading model from {ckpt_path}")
if use_safetensors:
import safetensors.torch
ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
else:
ckpt = torch.load(ckpt_path, map_location='cpu', weights_only=True)
model_kwargs = config['params']
model_kwargs.update(kwargs)
model = cls(**model_kwargs)
model.load_state_dict(ckpt)
model.to(device=device, dtype=dtype)
return model
@classmethod
def from_pretrained(
cls,
model_path,
device='cuda',
dtype=torch.float16,
use_safetensors=False,
variant='fp16',
subfolder='hunyuan3d-vae-v2-1',
**kwargs,
):
config_path, ckpt_path = smart_load_model(
model_path,
subfolder=subfolder,
use_safetensors=use_safetensors,
variant=variant
)
return cls.from_single_file(
ckpt_path,
config_path,
device=device,
dtype=dtype,
use_safetensors=use_safetensors,
**kwargs
)
def init_from_ckpt(self, path, ignore_keys=()):
state_dict = torch.load(path, map_location="cpu")
state_dict = state_dict.get("state_dict", state_dict)
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
missing, unexpected = self.load_state_dict(state_dict, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def __init__(
self,
volume_decoder=None,
surface_extractor=None
):
super().__init__()
if volume_decoder is None:
volume_decoder = VanillaVolumeDecoder()
if surface_extractor is None:
surface_extractor = MCSurfaceExtractor()
self.volume_decoder = volume_decoder
self.surface_extractor = surface_extractor
def latents2mesh(self, latents: torch.FloatTensor, **kwargs):
with synchronize_timer('Volume decoding'):
grid_logits = self.volume_decoder(latents, self.geo_decoder, **kwargs)
with synchronize_timer('Surface extraction'):
outputs = self.surface_extractor(grid_logits, **kwargs)
return outputs
def enable_flashvdm_decoder(
self,
enabled: bool = True,
adaptive_kv_selection=True,
topk_mode='mean',
mc_algo='dmc',
):
if enabled:
if adaptive_kv_selection:
self.volume_decoder = FlashVDMVolumeDecoding(topk_mode)
else:
self.volume_decoder = HierarchicalVolumeDecoding()
if mc_algo not in SurfaceExtractors.keys():
raise ValueError(f'Unsupported mc_algo {mc_algo}, available:{list(SurfaceExtractors.keys())}')
self.surface_extractor = SurfaceExtractors[mc_algo]()
else:
self.volume_decoder = VanillaVolumeDecoder()
self.surface_extractor = MCSurfaceExtractor()
class ShapeVAE(VectsetVAE):
def __init__(
self,
*,
num_latents: int,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
num_encoder_layers: int = 8,
pc_size: int = 5120,
pc_sharpedge_size: int = 5120,
point_feats: int = 3,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
use_ln_post: bool = True,
ckpt_path = None
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.downsample_ratio = downsample_ratio
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.encoder = PointCrossAttentionEncoder(
fourier_embedder=self.fourier_embedder,
num_latents=num_latents,
downsample_ratio=self.downsample_ratio,
pc_size=pc_size,
pc_sharpedge_size=pc_sharpedge_size,
point_feats=point_feats,
width=width,
heads=heads,
layers=num_encoder_layers,
qkv_bias=qkv_bias,
use_ln_post=use_ln_post,
qk_norm=qk_norm
)
self.pre_kl = nn.Linear(width, embed_dim * 2)
self.post_kl = nn.Linear(embed_dim, width)
self.transformer = Transformer(
n_ctx=num_latents,
width=width,
layers=num_decoder_layers,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.geo_decoder = CrossAttentionDecoder(
fourier_embedder=self.fourier_embedder,
out_channels=1,
num_latents=num_latents,
mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
downsample_ratio=geo_decoder_downsample_ratio,
enable_ln_post=self.geo_decoder_ln_post,
width=width // geo_decoder_downsample_ratio,
heads=heads // geo_decoder_downsample_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
label_type=label_type,
)
self.scale_factor = scale_factor
self.latent_shape = (num_latents, embed_dim)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path)
def forward(self, latents):
latents = self.post_kl(latents)
latents = self.transformer(latents)
return latents
def encode(self, surface, sample_posterior=True):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents, _ = self.encoder(pc, feats)
# print(latents.shape, self.pre_kl.weight.shape)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
latents = posterior.sample()
else:
latents = posterior.mode()
return latents
def decode(self, latents):
latents = self.post_kl(latents)
latents = self.transformer(latents)
return latents

View File

@ -0,0 +1,164 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from typing import Union, Tuple, List
import numpy as np
import torch
from skimage import measure
class Latent2MeshOutput:
def __init__(self, mesh_v=None, mesh_f=None):
self.mesh_v = mesh_v
self.mesh_f = mesh_f
def center_vertices(vertices):
"""Translate the vertices so that bounding box is centered at zero."""
vert_min = vertices.min(dim=0)[0]
vert_max = vertices.max(dim=0)[0]
vert_center = 0.5 * (vert_min + vert_max)
return vertices - vert_center
class SurfaceExtractor:
def _compute_box_stat(self, bounds: Union[Tuple[float], List[float], float], octree_resolution: int):
"""
Compute grid size, bounding box minimum coordinates, and bounding box size based on input
bounds and resolution.
Args:
bounds (Union[Tuple[float], List[float], float]): Bounding box coordinates or a single
float representing half side length.
If float, bounds are assumed symmetric around zero in all axes.
Expected format if list/tuple: [xmin, ymin, zmin, xmax, ymax, zmax].
octree_resolution (int): Resolution of the octree grid.
Returns:
grid_size (List[int]): Grid size along each axis (x, y, z), each equal to octree_resolution + 1.
bbox_min (np.ndarray): Minimum coordinates of the bounding box (xmin, ymin, zmin).
bbox_size (np.ndarray): Size of the bounding box along each axis (xmax - xmin, etc.).
"""
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
return grid_size, bbox_min, bbox_size
def run(self, *args, **kwargs):
"""
Abstract method to extract surface mesh from grid logits.
This method should be implemented by subclasses.
Raises:
NotImplementedError: Always, since this is an abstract method.
"""
return NotImplementedError
def __call__(self, grid_logits, **kwargs):
"""
Process a batch of grid logits to extract surface meshes.
Args:
grid_logits (torch.Tensor): Batch of grid logits with shape (batch_size, ...).
**kwargs: Additional keyword arguments passed to the `run` method.
Returns:
List[Optional[Latent2MeshOutput]]: List of mesh outputs for each grid in the batch.
If extraction fails for a grid, None is appended at that position.
"""
outputs = []
for i in range(grid_logits.shape[0]):
try:
vertices, faces = self.run(grid_logits[i], **kwargs)
vertices = vertices.astype(np.float32)
faces = np.ascontiguousarray(faces)
outputs.append(Latent2MeshOutput(mesh_v=vertices, mesh_f=faces))
except Exception:
import traceback
traceback.print_exc()
outputs.append(None)
return outputs
class MCSurfaceExtractor(SurfaceExtractor):
def run(self, grid_logit, *, mc_level, bounds, octree_resolution, **kwargs):
"""
Extract surface mesh using the Marching Cubes algorithm.
Args:
grid_logit (torch.Tensor): 3D grid logits tensor representing the scalar field.
mc_level (float): The level (iso-value) at which to extract the surface.
bounds (Union[Tuple[float], List[float], float]): Bounding box coordinates or half side length.
octree_resolution (int): Resolution of the octree grid.
**kwargs: Additional keyword arguments (ignored).
Returns:
Tuple[np.ndarray, np.ndarray]: Tuple containing:
- vertices (np.ndarray): Extracted mesh vertices, scaled and translated to bounding
box coordinates.
- faces (np.ndarray): Extracted mesh faces (triangles).
"""
vertices, faces, normals, _ = measure.marching_cubes(grid_logit.cpu().numpy(),
mc_level,
method="lewiner")
grid_size, bbox_min, bbox_size = self._compute_box_stat(bounds, octree_resolution)
vertices = vertices / grid_size * bbox_size + bbox_min
return vertices, faces
class DMCSurfaceExtractor(SurfaceExtractor):
def run(self, grid_logit, *, octree_resolution, **kwargs):
"""
Extract surface mesh using Differentiable Marching Cubes (DMC) algorithm.
Args:
grid_logit (torch.Tensor): 3D grid logits tensor representing the scalar field.
octree_resolution (int): Resolution of the octree grid.
**kwargs: Additional keyword arguments (ignored).
Returns:
Tuple[np.ndarray, np.ndarray]: Tuple containing:
- vertices (np.ndarray): Extracted mesh vertices, centered and converted to numpy.
- faces (np.ndarray): Extracted mesh faces (triangles), with reversed vertex order.
Raises:
ImportError: If the 'diso' package is not installed.
"""
device = grid_logit.device
if not hasattr(self, 'dmc'):
try:
from diso import DiffDMC
self.dmc = DiffDMC(dtype=torch.float32).to(device)
except:
raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'")
sdf = -grid_logit / octree_resolution
sdf = sdf.to(torch.float32).contiguous()
verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True)
verts = center_vertices(verts)
vertices = verts.detach().cpu().numpy()
faces = faces.detach().cpu().numpy()[:, ::-1]
return vertices, faces
SurfaceExtractors = {
'mc': MCSurfaceExtractor,
'dmc': DMCSurfaceExtractor,
}

View File

@ -0,0 +1,435 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from typing import Union, Tuple, List, Callable
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from tqdm import tqdm
from .attention_blocks import CrossAttentionDecoder
from .attention_processors import FlashVDMCrossAttentionProcessor, FlashVDMTopMCrossAttentionProcessor
from ...utils import logger
def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
device = input_tensor.device
D = input_tensor.shape[0]
signed_val = 0.0
# 添加偏移并处理无效值
val = input_tensor + alpha
valid_mask = val > -9000 # 假设-9000是无效值
# 改进的邻居获取函数(保持维度一致)
def get_neighbor(t, shift, axis):
"""根据指定轴进行位移并保持维度一致"""
if shift == 0:
return t.clone()
# 确定填充轴(输入为[D, D, D]对应z,y,x轴
pad_dims = [0, 0, 0, 0, 0, 0] # 格式:[x前x后y前y后z前z后]
# 根据轴类型设置填充
if axis == 0: # x轴最后一个维度
pad_idx = 0 if shift > 0 else 1
pad_dims[pad_idx] = abs(shift)
elif axis == 1: # y轴中间维度
pad_idx = 2 if shift > 0 else 3
pad_dims[pad_idx] = abs(shift)
elif axis == 2: # z轴第一个维度
pad_idx = 4 if shift > 0 else 5
pad_dims[pad_idx] = abs(shift)
# 执行填充添加batch和channel维度适配F.pad
padded = F.pad(t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode='replicate') # 反转顺序适配F.pad
# 构建动态切片索引
slice_dims = [slice(None)] * 3 # 初始化为全切片
if axis == 0: # x轴dim=2
if shift > 0:
slice_dims[0] = slice(shift, None)
else:
slice_dims[0] = slice(None, shift)
elif axis == 1: # y轴dim=1
if shift > 0:
slice_dims[1] = slice(shift, None)
else:
slice_dims[1] = slice(None, shift)
elif axis == 2: # z轴dim=0
if shift > 0:
slice_dims[2] = slice(shift, None)
else:
slice_dims[2] = slice(None, shift)
# 应用切片并恢复维度
padded = padded.squeeze(0).squeeze(0)
sliced = padded[slice_dims]
return sliced
# 获取各方向邻居(确保维度一致)
left = get_neighbor(val, 1, axis=0) # x方向
right = get_neighbor(val, -1, axis=0)
back = get_neighbor(val, 1, axis=1) # y方向
front = get_neighbor(val, -1, axis=1)
down = get_neighbor(val, 1, axis=2) # z方向
up = get_neighbor(val, -1, axis=2)
# 处理边界无效值使用where保持维度一致
def safe_where(neighbor):
return torch.where(neighbor > -9000, neighbor, val)
left = safe_where(left)
right = safe_where(right)
back = safe_where(back)
front = safe_where(front)
down = safe_where(down)
up = safe_where(up)
# 计算符号一致性转换为float32确保精度
sign = torch.sign(val.to(torch.float32))
neighbors_sign = torch.stack([
torch.sign(left.to(torch.float32)),
torch.sign(right.to(torch.float32)),
torch.sign(back.to(torch.float32)),
torch.sign(front.to(torch.float32)),
torch.sign(down.to(torch.float32)),
torch.sign(up.to(torch.float32))
], dim=0)
# 检查所有符号是否一致
same_sign = torch.all(neighbors_sign == sign, dim=0)
# 生成最终掩码
mask = (~same_sign).to(torch.int32)
return mask * valid_mask.to(torch.int32)
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
class VanillaVolumeDecoder:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc=f"Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
return grid_logits
class HierarchicalVolumeDecoding:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
mc_level: float = 0.0,
octree_resolution: int = None,
min_resolution: int = 63,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
resolutions = []
if octree_resolution < min_resolution:
resolutions.append(octree_resolution)
while octree_resolution >= min_resolution:
resolutions.append(octree_resolution)
octree_resolution = octree_resolution // 2
resolutions.reverse()
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=resolutions[0],
indexing="ij"
)
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
grid_size = np.array(grid_size)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
batch_size = latents.shape[0]
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
desc=f"Hierarchical Volume Decoding [r{resolutions[0] + 1}]"):
queries = xyz_samples[start: start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=batch_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2]))
for octree_depth_now in resolutions[1:]:
grid_size = np.array([octree_depth_now + 1] * 3)
resolution = bbox_size / octree_depth_now
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
curr_points += grid_logits.squeeze(0).abs() < 0.95
if octree_depth_now == resolutions[-1]:
expand_num = 0
else:
expand_num = 1
for i in range(expand_num):
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
for i in range(2 - expand_num):
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
nidx = torch.where(next_index > 0)
next_points = torch.stack(nidx, dim=1)
next_points = (next_points * torch.tensor(resolution, dtype=next_points.dtype, device=device) +
torch.tensor(bbox_min, dtype=next_points.dtype, device=device))
batch_logits = []
for start in tqdm(range(0, next_points.shape[0], num_chunks),
desc=f"Hierarchical Volume Decoding [r{octree_depth_now + 1}]"):
queries = next_points[start: start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=batch_queries.to(latents.dtype), latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
next_logits[nidx] = grid_logits[0, ..., 0]
grid_logits = next_logits.unsqueeze(0)
grid_logits[grid_logits == -10000.] = float('nan')
return grid_logits
class FlashVDMVolumeDecoding:
def __init__(self, topk_mode='mean'):
if topk_mode not in ['mean', 'merge']:
raise ValueError(f'Unsupported topk_mode {topk_mode}, available: {["mean", "merge"]}')
if topk_mode == 'mean':
self.processor = FlashVDMCrossAttentionProcessor()
else:
self.processor = FlashVDMTopMCrossAttentionProcessor()
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: CrossAttentionDecoder,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
mc_level: float = 0.0,
octree_resolution: int = None,
min_resolution: int = 63,
mini_grid_num: int = 4,
enable_pbar: bool = True,
**kwargs,
):
processor = self.processor
geo_decoder.set_cross_attention_processor(processor)
device = latents.device
dtype = latents.dtype
resolutions = []
if octree_resolution < min_resolution:
resolutions.append(octree_resolution)
while octree_resolution >= min_resolution:
resolutions.append(octree_resolution)
octree_resolution = octree_resolution // 2
resolutions.reverse()
resolutions[0] = round(resolutions[0] / mini_grid_num) * mini_grid_num - 1
for i, resolution in enumerate(resolutions[1:]):
resolutions[i + 1] = resolutions[0] * 2 ** (i + 1)
logger.info(f"FlashVDMVolumeDecoding Resolution: {resolutions}")
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=resolutions[0],
indexing="ij"
)
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
dilate.weight = torch.nn.Parameter(torch.ones(dilate.weight.shape, dtype=dtype, device=device))
grid_size = np.array(grid_size)
# 2. latents to 3d volume
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype)
batch_size = latents.shape[0]
mini_grid_size = xyz_samples.shape[0] // mini_grid_num
xyz_samples = xyz_samples.view(
mini_grid_num, mini_grid_size,
mini_grid_num, mini_grid_size,
mini_grid_num, mini_grid_size, 3
).permute(
0, 2, 4, 1, 3, 5, 6
).reshape(
-1, mini_grid_size * mini_grid_size * mini_grid_size, 3
)
batch_logits = []
num_batchs = max(num_chunks // xyz_samples.shape[1], 1)
for start in tqdm(range(0, xyz_samples.shape[0], num_batchs),
desc=f"FlashVDM Volume Decoding", disable=not enable_pbar):
queries = xyz_samples[start: start + num_batchs, :]
batch = queries.shape[0]
batch_latents = repeat(latents.squeeze(0), "p c -> b p c", b=batch)
processor.topk = True
logits = geo_decoder(queries=queries, latents=batch_latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=0).reshape(
mini_grid_num, mini_grid_num, mini_grid_num,
mini_grid_size, mini_grid_size,
mini_grid_size
).permute(0, 3, 1, 4, 2, 5).contiguous().view(
(batch_size, grid_size[0], grid_size[1], grid_size[2])
)
for octree_depth_now in resolutions[1:]:
grid_size = np.array([octree_depth_now + 1] * 3)
resolution = bbox_size / octree_depth_now
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
next_logits = torch.full(next_index.shape, -10000., dtype=dtype, device=device)
curr_points = extract_near_surface_volume_fn(grid_logits.squeeze(0), mc_level)
curr_points += grid_logits.squeeze(0).abs() < 0.95
if octree_depth_now == resolutions[-1]:
expand_num = 0
else:
expand_num = 1
for i in range(expand_num):
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
for i in range(2 - expand_num):
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
nidx = torch.where(next_index > 0)
next_points = torch.stack(nidx, dim=1)
next_points = (next_points * torch.tensor(resolution, dtype=torch.float32, device=device) +
torch.tensor(bbox_min, dtype=torch.float32, device=device))
query_grid_num = 6
min_val = next_points.min(axis=0).values
max_val = next_points.max(axis=0).values
vol_queries_index = (next_points - min_val) / (max_val - min_val) * (query_grid_num - 0.001)
index = torch.floor(vol_queries_index).long()
index = index[..., 0] * (query_grid_num ** 2) + index[..., 1] * query_grid_num + index[..., 2]
index = index.sort()
next_points = next_points[index.indices].unsqueeze(0).contiguous()
unique_values = torch.unique(index.values, return_counts=True)
grid_logits = torch.zeros((next_points.shape[1]), dtype=latents.dtype, device=latents.device)
input_grid = [[], []]
logits_grid_list = []
start_num = 0
sum_num = 0
for grid_index, count in zip(unique_values[0].cpu().tolist(), unique_values[1].cpu().tolist()):
if sum_num + count < num_chunks or sum_num == 0:
sum_num += count
input_grid[0].append(grid_index)
input_grid[1].append(count)
else:
processor.topk = input_grid
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
start_num = start_num + sum_num
logits_grid_list.append(logits_grid)
input_grid = [[grid_index], [count]]
sum_num = count
if sum_num > 0:
processor.topk = input_grid
logits_grid = geo_decoder(queries=next_points[:, start_num:start_num + sum_num], latents=latents)
logits_grid_list.append(logits_grid)
logits_grid = torch.cat(logits_grid_list, dim=1)
grid_logits[index.indices] = logits_grid.squeeze(0).squeeze(-1)
next_logits[nidx] = grid_logits
grid_logits = next_logits.unsqueeze(0)
grid_logits[grid_logits == -10000.] = float('nan')
return grid_logits

View File

@ -0,0 +1,257 @@
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
from transformers import (
CLIPVisionModelWithProjection,
CLIPVisionConfig,
Dinov2Model,
Dinov2Config,
)
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1)
class ImageEncoder(nn.Module):
def __init__(
self,
version=None,
config=None,
use_cls_token=True,
image_size=224,
**kwargs,
):
super().__init__()
if config is None:
self.model = self.MODEL_CLASS.from_pretrained(version)
else:
self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config))
self.model.eval()
self.model.requires_grad_(False)
self.use_cls_token = use_cls_token
self.size = image_size // 14
self.num_patches = (image_size // 14) ** 2
if self.use_cls_token:
self.num_patches += 1
self.transform = transforms.Compose(
[
transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True),
transforms.CenterCrop(image_size),
transforms.Normalize(
mean=self.mean,
std=self.std,
),
]
)
def forward(self, image, mask=None, value_range=(-1, 1), **kwargs):
if value_range is not None:
low, high = value_range
image = (image - low) / (high - low)
image = image.to(self.model.device, dtype=self.model.dtype)
inputs = self.transform(image)
outputs = self.model(inputs)
last_hidden_state = outputs.last_hidden_state
if not self.use_cls_token:
last_hidden_state = last_hidden_state[:, 1:, :]
return last_hidden_state
def unconditional_embedding(self, batch_size, **kwargs):
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
zero = torch.zeros(
batch_size,
self.num_patches,
self.model.config.hidden_size,
device=device,
dtype=dtype,
)
return zero
class CLIPImageEncoder(ImageEncoder):
MODEL_CLASS = CLIPVisionModelWithProjection
MODEL_CONFIG_CLASS = CLIPVisionConfig
mean = [0.48145466, 0.4578275, 0.40821073]
std = [0.26862954, 0.26130258, 0.27577711]
class DinoImageEncoder(ImageEncoder):
MODEL_CLASS = Dinov2Model
MODEL_CONFIG_CLASS = Dinov2Config
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
class DinoImageEncoderMV(DinoImageEncoder):
def __init__(
self,
version=None,
config=None,
use_cls_token=True,
image_size=224,
view_num=4,
**kwargs,
):
super().__init__(version, config, use_cls_token, image_size, **kwargs)
self.view_num = view_num
self.num_patches = self.num_patches
pos = np.arange(self.view_num, dtype=np.float32)
view_embedding = torch.from_numpy(
get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float()
view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1)
self.view_embed = view_embedding.unsqueeze(0)
def forward(self, image, mask=None, value_range=(-1, 1), view_idxs=None):
if value_range is not None:
low, high = value_range
image = (image - low) / (high - low)
image = image.to(self.model.device, dtype=self.model.dtype)
bs, num_views, c, h, w = image.shape
image = image.view(bs * num_views, c, h, w)
inputs = self.transform(image)
outputs = self.model(inputs)
last_hidden_state = outputs.last_hidden_state
last_hidden_state = last_hidden_state.view(
bs, num_views, last_hidden_state.shape[-2],
last_hidden_state.shape[-1]
)
view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device)
if view_idxs is not None:
assert len(view_idxs) == bs
view_embeddings = []
for i in range(bs):
view_idx = view_idxs[i]
assert num_views == len(view_idx)
view_embeddings.append(self.view_embed[:, view_idx, ...])
view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device)
if num_views != self.view_num:
view_embedding = view_embedding[:, :num_views, ...]
last_hidden_state = last_hidden_state + view_embedding
last_hidden_state = last_hidden_state.view(bs, num_views * last_hidden_state.shape[-2],
last_hidden_state.shape[-1])
return last_hidden_state
def unconditional_embedding(self, batch_size, view_idxs=None, **kwargs):
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
zero = torch.zeros(
batch_size,
self.num_patches * len(view_idxs[0]),
self.model.config.hidden_size,
device=device,
dtype=dtype,
)
return zero
def build_image_encoder(config):
if config['type'] == 'CLIPImageEncoder':
return CLIPImageEncoder(**config['kwargs'])
elif config['type'] == 'DinoImageEncoder':
return DinoImageEncoder(**config['kwargs'])
elif config['type'] == 'DinoImageEncoderMV':
return DinoImageEncoderMV(**config['kwargs'])
else:
raise ValueError(f'Unknown image encoder type: {config["type"]}')
class DualImageEncoder(nn.Module):
def __init__(
self,
main_image_encoder,
additional_image_encoder,
):
super().__init__()
self.main_image_encoder = build_image_encoder(main_image_encoder)
self.additional_image_encoder = build_image_encoder(additional_image_encoder)
def forward(self, image, mask=None, **kwargs):
outputs = {
'main': self.main_image_encoder(image, mask=mask, **kwargs),
'additional': self.additional_image_encoder(image, mask=mask, **kwargs),
}
return outputs
def unconditional_embedding(self, batch_size, **kwargs):
outputs = {
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
'additional': self.additional_image_encoder.unconditional_embedding(batch_size, **kwargs),
}
return outputs
class SingleImageEncoder(nn.Module):
def __init__(
self,
main_image_encoder,
):
super().__init__()
self.main_image_encoder = build_image_encoder(main_image_encoder)
def forward(self, image, mask=None, **kwargs):
outputs = {
'main': self.main_image_encoder(image, mask=mask, **kwargs),
}
return outputs
def unconditional_embedding(self, batch_size, **kwargs):
outputs = {
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
}
return outputs

View File

@ -0,0 +1,15 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from .hunyuan3ddit import Hunyuan3DDiT

View File

@ -0,0 +1,404 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import math
from dataclasses import dataclass
from typing import List, Tuple, Optional
import torch
from torch import Tensor, nn
from einops import rearrange
# set up attention backend
scaled_dot_product_attention = nn.functional.scaled_dot_product_attention
if os.environ.get('USE_SAGEATTN', '0') == '1':
try:
from sageattention import sageattn
except ImportError:
raise ImportError('Please install the package "sageattention" to use this USE_SAGEATTN.')
scaled_dot_product_attention = sageattn
def attention(q: Tensor, k: Tensor, v: Tensor, **kwargs) -> Tensor:
x = scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
freqs = freqs.to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class GELU(nn.Module):
def __init__(self, approximate='tanh'):
super().__init__()
self.approximate = approximate
def forward(self, x: Tensor) -> Tensor:
return nn.functional.gelu(x.contiguous(), approximate=self.approximate)
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> Tuple[ModulationOut, Optional[ModulationOut]]:
out = self.lin(nn.functional.silu(vec))[:, None, :]
out = out.chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
qkv_bias: bool = False,
):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> Tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: Optional[float] = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
class Hunyuan3DDiT(nn.Module):
def __init__(
self,
in_channels: int = 64,
context_in_dim: int = 1536,
hidden_size: int = 1024,
mlp_ratio: float = 4.0,
num_heads: int = 16,
depth: int = 16,
depth_single_blocks: int = 32,
axes_dim: List[int] = [64],
theta: int = 10_000,
qkv_bias: bool = True,
time_factor: float = 1000,
guidance_embed: bool = False,
ckpt_path: Optional[str] = None,
**kwargs,
):
super().__init__()
self.in_channels = in_channels
self.context_in_dim = context_in_dim
self.hidden_size = hidden_size
self.mlp_ratio = mlp_ratio
self.num_heads = num_heads
self.depth = depth
self.depth_single_blocks = depth_single_blocks
self.axes_dim = axes_dim
self.theta = theta
self.qkv_bias = qkv_bias
self.time_factor = time_factor
self.out_channels = self.in_channels
self.guidance_embed = guidance_embed
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.latent_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.cond_in = nn.Linear(context_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if guidance_embed else nn.Identity()
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
if ckpt_path is not None:
print('restored denoiser ckpt', ckpt_path)
ckpt = torch.load(ckpt_path, map_location="cpu")
if 'state_dict' not in ckpt:
# deepspeed ckpt
state_dict = {}
for k in ckpt.keys():
new_k = k.replace('_forward_module.', '')
state_dict[new_k] = ckpt[k]
else:
state_dict = ckpt["state_dict"]
final_state_dict = {}
for k, v in state_dict.items():
if k.startswith('model.'):
final_state_dict[k.replace('model.', '')] = v
else:
final_state_dict[k] = v
missing, unexpected = self.load_state_dict(final_state_dict, strict=False)
print('unexpected keys:', unexpected)
print('missing keys:', missing)
def forward(self, x, t, contexts, **kwargs) -> Tensor:
cond = contexts['main']
latent = self.latent_in(x)
vec = self.time_in(timestep_embedding(t, 256, self.time_factor).to(dtype=latent.dtype))
if self.guidance_embed:
guidance = kwargs.get('guidance', None)
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.time_factor))
cond = self.cond_in(cond)
pe = None
for block in self.double_blocks:
latent, cond = block(img=latent, txt=cond, vec=vec, pe=pe)
latent = torch.cat((cond, latent), 1)
for block in self.single_blocks:
latent = block(latent, vec=vec, pe=pe)
latent = latent[:, cond.shape[1]:, ...]
latent = self.final_layer(latent, vec)
return latent

View File

@ -0,0 +1,596 @@
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .moe_layers import MoEBlock
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1)
class Timesteps(nn.Module):
def __init__(self,
num_channels: int,
downscale_freq_shift: float = 0.0,
scale: int = 1,
max_period: int = 10000
):
super().__init__()
self.num_channels = num_channels
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
self.max_period = max_period
def forward(self, timesteps):
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
embedding_dim = self.num_channels
half_dim = embedding_dim // 2
exponent = -math.log(self.max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - self.downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
emb = self.scale * emb
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, cond_proj_dim=None, out_size=None):
super().__init__()
if out_size is None:
out_size = hidden_size
self.mlp = nn.Sequential(
nn.Linear(hidden_size, frequency_embedding_size, bias=True),
nn.GELU(),
nn.Linear(frequency_embedding_size, out_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, frequency_embedding_size, bias=False)
self.time_embed = Timesteps(hidden_size)
def forward(self, t, condition):
t_freq = self.time_embed(t).type(self.mlp[0].weight.dtype)
# t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype)
if condition is not None:
t_freq = t_freq + self.cond_proj(condition)
t = self.mlp(t_freq)
t = t.unsqueeze(dim=1)
return t
class MLP(nn.Module):
def __init__(self, *, width: int):
super().__init__()
self.width = width
self.fc1 = nn.Linear(width, width * 4)
self.fc2 = nn.Linear(width * 4, width)
self.gelu = nn.GELU()
def forward(self, x):
return self.fc2(self.gelu(self.fc1(x)))
class CrossAttention(nn.Module):
def __init__(
self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
with_decoupled_ca=False,
decoupled_ca_dim=16,
decoupled_ca_weight=1.0,
**kwargs,
):
super().__init__()
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
self.head_dim = self.qdim // num_heads
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
self.scale = self.head_dim ** -0.5
self.to_q = nn.Linear(qdim, qdim, bias=qkv_bias)
self.to_k = nn.Linear(kdim, qdim, bias=qkv_bias)
self.to_v = nn.Linear(kdim, qdim, bias=qkv_bias)
# TODO: eps should be 1 / 65530 if using fp16
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.out_proj = nn.Linear(qdim, qdim, bias=True)
self.with_dca = with_decoupled_ca
if self.with_dca:
self.kv_proj_dca = nn.Linear(kdim, 2 * qdim, bias=qkv_bias)
self.k_norm_dca = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.dca_dim = decoupled_ca_dim
self.dca_weight = decoupled_ca_weight
def forward(self, x, y):
"""
Parameters
----------
x: torch.Tensor
(batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
y: torch.Tensor
(batch, seqlen2, hidden_dim2)
freqs_cis_img: torch.Tensor
(batch, hidden_dim // 2), RoPE for image
"""
b, s1, c = x.shape # [b, s1, D]
if self.with_dca:
token_len = y.shape[1]
context_dca = y[:, -self.dca_dim:, :]
kv_dca = self.kv_proj_dca(context_dca).view(b, self.dca_dim, 2, self.num_heads, self.head_dim)
k_dca, v_dca = kv_dca.unbind(dim=2) # [b, s, h, d]
k_dca = self.k_norm_dca(k_dca)
y = y[:, :(token_len - self.dca_dim), :]
_, s2, c = y.shape # [b, s2, 1024]
q = self.to_q(x)
k = self.to_k(y)
v = self.to_v(y)
kv = torch.cat((k, v), dim=-1)
split_size = kv.shape[-1] // self.num_heads // 2
kv = kv.view(1, -1, self.num_heads, split_size * 2)
k, v = torch.split(kv, split_size, dim=-1)
q = q.view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d]
k = k.view(b, s2, self.num_heads, self.head_dim) # [b, s2, h, d]
v = v.view(b, s2, self.num_heads, self.head_dim) # [b, s2, h, d]
q = self.q_norm(q)
k = self.k_norm(k)
with torch.backends.cuda.sdp_kernel(
enable_flash=True,
enable_math=False,
enable_mem_efficient=True
):
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.num_heads), (q, k, v))
context = F.scaled_dot_product_attention(
q, k, v
).transpose(1, 2).reshape(b, s1, -1)
if self.with_dca:
with torch.backends.cuda.sdp_kernel(
enable_flash=True,
enable_math=False,
enable_mem_efficient=True
):
k_dca, v_dca = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.num_heads),
(k_dca, v_dca))
context_dca = F.scaled_dot_product_attention(
q, k_dca, v_dca).transpose(1, 2).reshape(b, s1, -1)
context = context + self.dca_weight * context_dca
out = self.out_proj(context) # context.reshape - B, L1, -1
return out
class Attention(nn.Module):
"""
We rename some layer names to align with flash attention
"""
def __init__(
self,
dim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
self.head_dim = self.dim // num_heads
# This assertion is aligned with flash attention
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
self.scale = self.head_dim ** -0.5
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
self.to_k = nn.Linear(dim, dim, bias=qkv_bias)
self.to_v = nn.Linear(dim, dim, bias=qkv_bias)
# TODO: eps should be 1 / 65530 if using fp16
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.out_proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
q = self.to_q(x)
k = self.to_k(x)
v = self.to_v(x)
qkv = torch.cat((q, k, v), dim=-1)
split_size = qkv.shape[-1] // self.num_heads // 3
qkv = qkv.view(1, -1, self.num_heads, split_size * 3)
q, k, v = torch.split(qkv, split_size, dim=-1)
q = q.reshape(B, N, self.num_heads, self.head_dim).transpose(1, 2) # [b, h, s, d]
k = k.reshape(B, N, self.num_heads, self.head_dim).transpose(1, 2) # [b, h, s, d]
v = v.reshape(B, N, self.num_heads, self.head_dim).transpose(1, 2)
q = self.q_norm(q) # [b, h, s, d]
k = self.k_norm(k) # [b, h, s, d]
with torch.backends.cuda.sdp_kernel(
enable_flash=True,
enable_math=False,
enable_mem_efficient=True
):
x = F.scaled_dot_product_attention(q, k, v)
x = x.transpose(1, 2).reshape(B, N, -1)
x = self.out_proj(x)
return x
class HunYuanDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
c_emb_size,
num_heads,
text_states_dim=1024,
use_flash_attn=False,
qk_norm=False,
norm_layer=nn.LayerNorm,
qk_norm_layer=nn.RMSNorm,
with_decoupled_ca=False,
decoupled_ca_dim=16,
decoupled_ca_weight=1.0,
init_scale=1.0,
qkv_bias=True,
skip_connection=True,
timested_modulate=False,
use_moe: bool = False,
num_experts: int = 8,
moe_top_k: int = 2,
**kwargs,
):
super().__init__()
self.use_flash_attn = use_flash_attn
use_ele_affine = True
# ========================= Self-Attention =========================
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
norm_layer=qk_norm_layer)
# ========================= FFN =========================
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6)
# ========================= Add =========================
# Simply use add like SDXL.
self.timested_modulate = timested_modulate
if self.timested_modulate:
self.default_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(c_emb_size, hidden_size, bias=True)
)
# ========================= Cross-Attention =========================
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_norm=qk_norm, norm_layer=qk_norm_layer,
with_decoupled_ca=with_decoupled_ca, decoupled_ca_dim=decoupled_ca_dim,
decoupled_ca_weight=decoupled_ca_weight, init_scale=init_scale,
)
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6)
if skip_connection:
self.skip_norm = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6)
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size)
else:
self.skip_linear = None
self.use_moe = use_moe
if self.use_moe:
print("using moe")
self.moe = MoEBlock(
hidden_size,
num_experts=num_experts,
moe_top_k=moe_top_k,
dropout=0.0,
activation_fn="gelu",
final_dropout=False,
ff_inner_dim=int(hidden_size * 4.0),
ff_bias=True,
)
else:
self.mlp = MLP(width=hidden_size)
def forward(self, x, c=None, text_states=None, skip_value=None):
if self.skip_linear is not None:
cat = torch.cat([skip_value, x], dim=-1)
x = self.skip_linear(cat)
x = self.skip_norm(x)
# Self-Attention
if self.timested_modulate:
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
x = x + shift_msa
attn_out = self.attn1(self.norm1(x))
x = x + attn_out
# Cross-Attention
x = x + self.attn2(self.norm2(x), text_states)
# FFN Layer
mlp_inputs = self.norm3(x)
if self.use_moe:
x = x + self.moe(mlp_inputs)
else:
x = x + self.mlp(mlp_inputs)
return x
class AttentionPool(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x, attention_mask=None):
x = x.permute(1, 0, 2) # NLC -> LNC
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(-1).permute(1, 0, 2)
global_emb = (x * attention_mask).sum(dim=0) / attention_mask.sum(dim=0)
x = torch.cat([global_emb[None,], x], dim=0)
else:
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
class FinalLayer(nn.Module):
"""
The final layer of HunYuanDiT.
"""
def __init__(self, final_hidden_size, out_channels):
super().__init__()
self.final_hidden_size = final_hidden_size
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=True, eps=1e-6)
self.linear = nn.Linear(final_hidden_size, out_channels, bias=True)
def forward(self, x):
x = self.norm_final(x)
x = x[:, 1:]
x = self.linear(x)
return x
class HunYuanDiTPlain(nn.Module):
def __init__(
self,
input_size=1024,
in_channels=4,
hidden_size=1024,
context_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4.0,
norm_type='layer',
qk_norm_type='rms',
qk_norm=False,
text_len=257,
with_decoupled_ca=False,
additional_cond_hidden_state=768,
decoupled_ca_dim=16,
decoupled_ca_weight=1.0,
use_pos_emb=False,
use_attention_pooling=True,
guidance_cond_proj_dim=None,
qkv_bias=True,
num_moe_layers: int = 6,
num_experts: int = 8,
moe_top_k: int = 2,
**kwargs
):
super().__init__()
self.input_size = input_size
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.hidden_size = hidden_size
self.norm = nn.LayerNorm if norm_type == 'layer' else nn.RMSNorm
self.qk_norm = nn.RMSNorm if qk_norm_type == 'rms' else nn.LayerNorm
self.context_dim = context_dim
self.with_decoupled_ca = with_decoupled_ca
self.decoupled_ca_dim = decoupled_ca_dim
self.decoupled_ca_weight = decoupled_ca_weight
self.use_pos_emb = use_pos_emb
self.use_attention_pooling = use_attention_pooling
self.guidance_cond_proj_dim = guidance_cond_proj_dim
self.text_len = text_len
self.x_embedder = nn.Linear(in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim=guidance_cond_proj_dim)
# Will use fixed sin-cos embedding:
if self.use_pos_emb:
self.register_buffer("pos_embed", torch.zeros(1, input_size, hidden_size))
pos = np.arange(self.input_size, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1], pos)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
self.use_attention_pooling = use_attention_pooling
if use_attention_pooling:
self.pooler = AttentionPool(self.text_len, context_dim, num_heads=8, output_dim=1024)
self.extra_embedder = nn.Sequential(
nn.Linear(1024, hidden_size * 4),
nn.SiLU(),
nn.Linear(hidden_size * 4, hidden_size, bias=True),
)
if with_decoupled_ca:
self.additional_cond_hidden_state = additional_cond_hidden_state
self.additional_cond_proj = nn.Sequential(
nn.Linear(additional_cond_hidden_state, hidden_size * 4),
nn.SiLU(),
nn.Linear(hidden_size * 4, 1024, bias=True),
)
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
text_states_dim=context_dim,
qk_norm=qk_norm,
norm_layer=self.norm,
qk_norm_layer=self.qk_norm,
skip_connection=layer > depth // 2,
with_decoupled_ca=with_decoupled_ca,
decoupled_ca_dim=decoupled_ca_dim,
decoupled_ca_weight=decoupled_ca_weight,
qkv_bias=qkv_bias,
use_moe=True if depth - layer <= num_moe_layers else False,
num_experts=num_experts,
moe_top_k=moe_top_k
)
for layer in range(depth)
])
self.depth = depth
self.final_layer = FinalLayer(hidden_size, self.out_channels)
def forward(self, x, t, contexts, **kwargs):
cond = contexts['main']
t = self.t_embedder(t, condition=kwargs.get('guidance_cond'))
x = self.x_embedder(x)
if self.use_pos_emb:
pos_embed = self.pos_embed.to(x.dtype)
x = x + pos_embed
if self.use_attention_pooling:
extra_vec = self.pooler(cond, None)
c = t + self.extra_embedder(extra_vec) # [B, D]
else:
c = t
if self.with_decoupled_ca:
additional_cond = self.additional_cond_proj(contexts['additional'])
cond = torch.cat([cond, additional_cond], dim=1)
x = torch.cat([c, x], dim=1)
skip_value_list = []
for layer, block in enumerate(self.blocks):
skip_value = None if layer <= self.depth // 2 else skip_value_list.pop()
x = block(x, c, cond, skip_value=skip_value)
if layer < self.depth // 2:
skip_value_list.append(x)
x = self.final_layer(x)
return x

View File

@ -0,0 +1,177 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
import torch.nn.functional as F
from diffusers.models.attention import FeedForward
class AddAuxiliaryLoss(torch.autograd.Function):
"""
The trick function of adding auxiliary (aux) loss,
which includes the gradient of the aux loss during backpropagation.
"""
@staticmethod
def forward(ctx, x, loss):
assert loss.numel() == 1
ctx.dtype = loss.dtype
ctx.required_aux_loss = loss.requires_grad
return x
@staticmethod
def backward(ctx, grad_output):
grad_loss = None
if ctx.required_aux_loss:
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
return grad_output, grad_loss
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01):
super().__init__()
self.top_k = num_experts_per_tok
self.n_routed_experts = num_experts
self.scoring_func = 'softmax'
self.alpha = aux_loss_alpha
self.seq_aux = False
# topk selection algorithm
self.norm_topk_prob = False
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
# print(bsz, seq_len, h)
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
### select top-k experts
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
### expert-level computation auxiliary loss
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
# always compute aux loss based on the naive greedy topk method
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(
1,
topk_idx_for_aux_loss,
torch.ones(
bsz, seq_len * aux_topk,
device=hidden_states.device
)
).div_(seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean()
aux_loss = aux_loss * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1),
num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MoEBlock(nn.Module):
def __init__(self, dim, num_experts=8, moe_top_k=2,
activation_fn = "gelu", dropout=0.0, final_dropout = False,
ff_inner_dim = None, ff_bias = True):
super().__init__()
self.moe_top_k = moe_top_k
self.experts = nn.ModuleList([
FeedForward(dim,dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias)
for i in range(num_experts)])
self.gate = MoEGate(embed_dim=dim, num_experts=num_experts, num_experts_per_tok=moe_top_k)
self.shared_experts = FeedForward(dim,dropout=dropout, activation_fn=activation_fn,
final_dropout=final_dropout, inner_dim=ff_inner_dim,
bias=ff_bias)
def initialize_weight(self):
pass
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim=0)
y = torch.empty_like(hidden_states, dtype=hidden_states.dtype)
for i, expert in enumerate(self.experts):
tmp = expert(hidden_states[flat_topk_idx == i])
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
y = AddAuxiliaryLoss.apply(y, aux_loss)
else:
y = self.moe_infer(hidden_states, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.moe_top_k
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# for fp16 and other dtype
expert_cache = expert_cache.to(expert_out.dtype)
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]),
expert_out,
reduce='sum')
return expert_cache

View File

@ -0,0 +1,354 @@
import os
from contextlib import contextmanager
from typing import List, Tuple, Optional, Union
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from pytorch_lightning.utilities import rank_zero_only
from ...utils.ema import LitEma
from ...utils.misc import instantiate_from_config, instantiate_non_trainable_model
class Diffuser(pl.LightningModule):
def __init__(
self,
*,
first_stage_config,
cond_stage_config,
denoiser_cfg,
scheduler_cfg,
optimizer_cfg,
pipeline_cfg=None,
image_processor_cfg=None,
lora_config=None,
ema_config=None,
first_stage_key: str = "surface",
cond_stage_key: str = "image",
scale_by_std: bool = False,
z_scale_factor: float = 1.0,
ckpt_path: Optional[str] = None,
ignore_keys: Union[Tuple[str], List[str]] = (),
torch_compile: bool = False,
):
super().__init__()
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# ========= init optimizer config ========= #
self.optimizer_cfg = optimizer_cfg
# ========= init diffusion scheduler ========= #
self.scheduler_cfg = scheduler_cfg
self.sampler = None
if 'transport' in scheduler_cfg:
self.transport = instantiate_from_config(scheduler_cfg.transport)
self.sampler = instantiate_from_config(scheduler_cfg.sampler, transport=self.transport)
self.sample_fn = self.sampler.sample_ode(**scheduler_cfg.sampler.ode_params)
# ========= init the model ========= #
self.denoiser_cfg = denoiser_cfg
self.model = instantiate_from_config(denoiser_cfg, device=None, dtype=None)
self.cond_stage_model = instantiate_from_config(cond_stage_config)
self.ckpt_path = ckpt_path
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
# ========= config lora model ========= #
if lora_config is not None:
from peft import LoraConfig, get_peft_model
loraconfig = LoraConfig(
r=lora_config.rank,
lora_alpha=lora_config.rank,
target_modules=lora_config.get('target_modules')
)
self.model = get_peft_model(self.model, loraconfig)
# ========= config ema model ========= #
self.ema_config = ema_config
if self.ema_config is not None:
if self.ema_config.ema_model == 'DSEma':
# from michelangelo.models.modules.ema_deepspeed import DSEma
from ..utils.ema_deepspeed import DSEma
self.model_ema = DSEma(self.model, decay=self.ema_config.ema_decay)
else:
self.model_ema = LitEma(self.model, decay=self.ema_config.ema_decay)
#do not initilize EMA weight from ckpt path, since I need to change moe layers
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
# ========= init vae at last to prevent it is overridden by loaded ckpt ========= #
self.first_stage_model = instantiate_non_trainable_model(first_stage_config)
self.scale_by_std = scale_by_std
if scale_by_std:
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
else:
self.z_scale_factor = z_scale_factor
# ========= init pipeline for inference ========= #
self.image_processor_cfg = image_processor_cfg
self.image_processor = None
if self.image_processor_cfg is not None:
self.image_processor = instantiate_from_config(self.image_processor_cfg)
self.pipeline_cfg = pipeline_cfg
from ...schedulers import FlowMatchEulerDiscreteScheduler
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
self.pipeline = instantiate_from_config(
pipeline_cfg,
vae=self.first_stage_model,
model=self.model,
scheduler=scheduler, # self.sampler,
conditioner=self.cond_stage_model,
image_processor=self.image_processor,
)
# ========= torch compile to accelerate ========= #
self.torch_compile = torch_compile
if self.torch_compile:
torch.nn.Module.compile(self.model)
torch.nn.Module.compile(self.first_stage_model)
torch.nn.Module.compile(self.cond_stage_model)
print(f'*' * 100)
print(f'Compile model for acceleration')
print(f'*' * 100)
@contextmanager
def ema_scope(self, context=None):
if self.ema_config is not None and self.ema_config.get('ema_inference', False):
self.model_ema.store(self.model)
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.ema_config is not None and self.ema_config.get('ema_inference', False):
self.model_ema.restore(self.model)
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=()):
ckpt = torch.load(path, map_location="cpu")
if 'state_dict' not in ckpt:
# deepspeed ckpt
state_dict = {}
for k in ckpt.keys():
new_k = k.replace('_forward_module.', '')
state_dict[new_k] = ckpt[k]
else:
state_dict = ckpt["state_dict"]
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if ik in k:
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
missing, unexpected = self.load_state_dict(state_dict, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def on_load_checkpoint(self, checkpoint):
"""
The pt_model is trained separately, so we already have access to its
checkpoint and load it separately with `self.set_pt_model`.
However, the PL Trainer is strict about
checkpoint loading (not configurable), so it expects the loaded state_dict
to match exactly the keys in the model state_dict.
So, when loading the checkpoint, before matching keys, we add all pt_model keys
from self.state_dict() to the checkpoint state dict, so that they match
"""
for key in self.state_dict().keys():
if key.startswith("model_ema") and key not in checkpoint["state_dict"]:
checkpoint["state_dict"][key] = self.state_dict()[key]
def configure_optimizers(self) -> Tuple[List, List]:
lr = self.learning_rate
params_list = []
trainable_parameters = list(self.model.parameters())
params_list.append({'params': trainable_parameters, 'lr': lr})
no_decay = ['bias', 'norm.weight', 'norm.bias', 'norm1.weight', 'norm1.bias', 'norm2.weight', 'norm2.bias']
if self.optimizer_cfg.get('train_image_encoder', False):
image_encoder_parameters = list(self.cond_stage_model.named_parameters())
image_encoder_parameters_decay = [param for name, param in image_encoder_parameters if
not any((no_decay_name in name) for no_decay_name in no_decay)]
image_encoder_parameters_nodecay = [param for name, param in image_encoder_parameters if
any((no_decay_name in name) for no_decay_name in no_decay)]
# filter trainable params
image_encoder_parameters_decay = [param for param in image_encoder_parameters_decay if
param.requires_grad]
image_encoder_parameters_nodecay = [param for param in image_encoder_parameters_nodecay if
param.requires_grad]
print(f"Image Encoder Params: {len(image_encoder_parameters_decay)} decay, ")
print(f"Image Encoder Params: {len(image_encoder_parameters_nodecay)} nodecay, ")
image_encoder_lr = self.optimizer_cfg['image_encoder_lr']
image_encoder_lr_multiply = self.optimizer_cfg.get('image_encoder_lr_multiply', 1.0)
image_encoder_lr = image_encoder_lr if image_encoder_lr is not None else lr * image_encoder_lr_multiply
params_list.append(
{'params': image_encoder_parameters_decay, 'lr': image_encoder_lr,
'weight_decay': 0.05})
params_list.append(
{'params': image_encoder_parameters_nodecay, 'lr': image_encoder_lr,
'weight_decay': 0.})
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=params_list, lr=lr)
if hasattr(self.optimizer_cfg, 'scheduler'):
scheduler_func = instantiate_from_config(
self.optimizer_cfg.scheduler,
max_decay_steps=self.trainer.max_steps,
lr_max=lr
)
scheduler = {
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
"interval": "step",
"frequency": 1
}
schedulers = [scheduler]
else:
schedulers = []
optimizers = [optimizer]
return optimizers, schedulers
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx):
# only for very first batch
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
and batch_idx == 0 and self.ckpt_path is None:
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
z_q = self.encode_first_stage(batch[self.first_stage_key])
z = z_q.detach()
del self.z_scale_factor
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
print("### USING STD-RESCALING ###")
def on_train_batch_end(self, *args, **kwargs):
if self.ema_config is not None:
self.model_ema(self.model)
def on_train_epoch_start(self) -> None:
pl.seed_everything(self.trainer.global_rank)
def forward(self, batch):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16): #float32 for text
contexts = self.cond_stage_model(image=batch.get('image'), text=batch.get('text'), mask=batch.get('mask'))
# t5_text = contexts['t5_text']['prompt_embeds']
# nan_count = torch.isnan(t5_text).sum()
# if nan_count > 0:
# print("t5_text has %d NaN values"%(nan_count))
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
latents = self.first_stage_model.encode(batch[self.first_stage_key], sample_posterior=True)
latents = self.z_scale_factor * latents
# print(latents.shape)
# check vae encode and decode is ok? answer is ok !
# import time
# from hy3dshape.pipelines import export_to_trimesh
# latents = 1. / self.z_scale_factor * latents
# latents = self.first_stage_model(latents)
# outputs = self.first_stage_model.latents2mesh(
# latents,
# bounds=1.01,
# mc_level=0.0,
# num_chunks=20000,
# octree_resolution=256,
# mc_algo='mc',
# enable_pbar=True
# )
# mesh = export_to_trimesh(outputs)
# if isinstance(mesh, list):
# for midx, m in enumerate(mesh):
# m.export(f"check_{midx}_{time.time()}.glb")
# else:
# mesh.export(f"check_{time.time()}.glb")
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
loss = self.transport.training_losses(self.model, latents, dict(contexts=contexts))["loss"].mean()
return loss
def training_step(self, batch, batch_idx, optimizer_idx=0):
loss = self.forward(batch)
split = 'train'
loss_dict = {
f"{split}/simple": loss.detach(),
f"{split}/total_loss": loss.detach(),
f"{split}/lr_abs": self.optimizers().param_groups[0]['lr'],
}
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
return loss
def validation_step(self, batch, batch_idx, optimizer_idx=0):
loss = self.forward(batch)
split = 'val'
loss_dict = {
f"{split}/simple": loss.detach(),
f"{split}/total_loss": loss.detach(),
f"{split}/lr_abs": self.optimizers().param_groups[0]['lr'],
}
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
return loss
@torch.no_grad()
def sample(self, batch, output_type='trimesh', **kwargs):
self.cond_stage_model.disable_drop = True
generator = torch.Generator().manual_seed(0)
with self.ema_scope("Sample"):
with torch.amp.autocast(device_type='cuda'):
try:
self.pipeline.device = self.device
self.pipeline.dtype = self.dtype
print("### USING PIPELINE ###")
print(f'device: {self.device} dtype : {self.dtype}')
additional_params = {'output_type':output_type}
image = batch.get("image", None)
mask = batch.get('mask', None)
# if not isinstance(image, torch.Tensor): print(image.shape)
# if isinstance(mask, torch.Tensor): print(mask.shape)
outputs = self.pipeline(image=image,
mask=mask,
generator=generator,
**additional_params)
except Exception as e:
import traceback
traceback.print_exc()
print(f"Unexpected {e=}, {type(e)=}")
with open("error.txt", "a") as f:
f.write(str(e))
f.write(traceback.format_exc())
f.write("\n")
outputs = [None]
self.cond_stage_model.disable_drop = False
return [outputs]

View File

@ -0,0 +1,97 @@
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from .transport import Transport, ModelType, WeightType, PathType, Sampler
def create_transport(
path_type='Linear',
prediction="velocity",
loss_weight=None,
train_eps=None,
sample_eps=None,
train_sample_type="uniform",
mean = 0.0,
std = 1.0,
shift_scale = 1.0,
):
"""function for creating Transport object
**Note**: model prediction defaults to velocity
Args:
- path_type: type of path to use; default to linear
- learn_score: set model prediction to score
- learn_noise: set model prediction to noise
- velocity_weighted: weight loss by velocity weight
- likelihood_weighted: weight loss by likelihood weight
- train_eps: small epsilon for avoiding instability during training
- sample_eps: small epsilon for avoiding instability during sampling
"""
if prediction == "noise":
model_type = ModelType.NOISE
elif prediction == "score":
model_type = ModelType.SCORE
else:
model_type = ModelType.VELOCITY
if loss_weight == "velocity":
loss_type = WeightType.VELOCITY
elif loss_weight == "likelihood":
loss_type = WeightType.LIKELIHOOD
else:
loss_type = WeightType.NONE
path_choice = {
"Linear": PathType.LINEAR,
"GVP": PathType.GVP,
"VP": PathType.VP,
}
path_type = path_choice[path_type]
if (path_type in [PathType.VP]):
train_eps = 1e-5 if train_eps is None else train_eps
sample_eps = 1e-3 if train_eps is None else sample_eps
elif (path_type in [PathType.GVP, PathType.LINEAR] and model_type != ModelType.VELOCITY):
train_eps = 1e-3 if train_eps is None else train_eps
sample_eps = 1e-3 if train_eps is None else sample_eps
else: # velocity & [GVP, LINEAR] is stable everywhere
train_eps = 0
sample_eps = 0
# create flow state
state = Transport(
model_type=model_type,
path_type=path_type,
loss_type=loss_type,
train_eps=train_eps,
sample_eps=sample_eps,
train_sample_type=train_sample_type,
mean=mean,
std=std,
shift_scale =shift_scale,
)
return state

View File

@ -0,0 +1,142 @@
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import numpy as np
import torch as th
import torch.nn as nn
from torchdiffeq import odeint
from functools import partial
from tqdm import tqdm
class sde:
"""SDE solver class"""
def __init__(
self,
drift,
diffusion,
*,
t0,
t1,
num_steps,
sampler_type,
):
assert t0 < t1, "SDE sampler has to be in forward time"
self.num_timesteps = num_steps
self.t = th.linspace(t0, t1, num_steps)
self.dt = self.t[1] - self.t[0]
self.drift = drift
self.diffusion = diffusion
self.sampler_type = sampler_type
def __Euler_Maruyama_step(self, x, mean_x, t, model, **model_kwargs):
w_cur = th.randn(x.size()).to(x)
t = th.ones(x.size(0)).to(x) * t
dw = w_cur * th.sqrt(self.dt)
drift = self.drift(x, t, model, **model_kwargs)
diffusion = self.diffusion(x, t)
mean_x = x + drift * self.dt
x = mean_x + th.sqrt(2 * diffusion) * dw
return x, mean_x
def __Heun_step(self, x, _, t, model, **model_kwargs):
w_cur = th.randn(x.size()).to(x)
dw = w_cur * th.sqrt(self.dt)
t_cur = th.ones(x.size(0)).to(x) * t
diffusion = self.diffusion(x, t_cur)
xhat = x + th.sqrt(2 * diffusion) * dw
K1 = self.drift(xhat, t_cur, model, **model_kwargs)
xp = xhat + self.dt * K1
K2 = self.drift(xp, t_cur + self.dt, model, **model_kwargs)
return xhat + 0.5 * self.dt * (K1 + K2), xhat # at last time point we do not perform the heun step
def __forward_fn(self):
"""TODO: generalize here by adding all private functions ending with steps to it"""
sampler_dict = {
"Euler": self.__Euler_Maruyama_step,
"Heun": self.__Heun_step,
}
try:
sampler = sampler_dict[self.sampler_type]
except:
raise NotImplementedError("Smapler type not implemented.")
return sampler
def sample(self, init, model, **model_kwargs):
"""forward loop of sde"""
x = init
mean_x = init
samples = []
sampler = self.__forward_fn()
for ti in self.t[:-1]:
with th.no_grad():
x, mean_x = sampler(x, mean_x, ti, model, **model_kwargs)
samples.append(x)
return samples
class ode:
"""ODE solver class"""
def __init__(
self,
drift,
*,
t0,
t1,
sampler_type,
num_steps,
atol,
rtol,
):
assert t0 < t1, "ODE sampler has to be in forward time"
self.drift = drift
self.t = th.linspace(t0, t1, num_steps)
self.atol = atol
self.rtol = rtol
self.sampler_type = sampler_type
def sample(self, x, model, **model_kwargs):
device = x[0].device if isinstance(x, tuple) else x.device
def _fn(t, x):
t = th.ones(x[0].size(0)).to(device) * t if isinstance(x, tuple) else th.ones(x.size(0)).to(device) * t
model_output = self.drift(x, t, model, **model_kwargs)
return model_output
t = self.t.to(device)
atol = [self.atol] * len(x) if isinstance(x, tuple) else [self.atol]
rtol = [self.rtol] * len(x) if isinstance(x, tuple) else [self.rtol]
samples = odeint(
_fn,
x,
t,
method=self.sampler_type,
atol=atol,
rtol=rtol
)
return samples

View File

@ -0,0 +1,220 @@
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch as th
import numpy as np
from functools import partial
def expand_t_like_x(t, x):
"""Function to reshape time t to broadcastable dimension of x
Args:
t: [batch_dim,], time vector
x: [batch_dim,...], data point
"""
dims = [1] * (len(x.size()) - 1)
t = t.view(t.size(0), *dims)
return t
#################### Coupling Plans ####################
class ICPlan:
"""Linear Coupling Plan"""
def __init__(self, sigma=0.0):
self.sigma = sigma
def compute_alpha_t(self, t):
"""Compute the data coefficient along the path"""
return t, 1
def compute_sigma_t(self, t):
"""Compute the noise coefficient along the path"""
return 1 - t, -1
def compute_d_alpha_alpha_ratio_t(self, t):
"""Compute the ratio between d_alpha and alpha"""
return 1 / t
def compute_drift(self, x, t):
"""We always output sde according to score parametrization; """
t = expand_t_like_x(t, x)
alpha_ratio = self.compute_d_alpha_alpha_ratio_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
drift = alpha_ratio * x
diffusion = alpha_ratio * (sigma_t ** 2) - sigma_t * d_sigma_t
return -drift, diffusion
def compute_diffusion(self, x, t, form="constant", norm=1.0):
"""Compute the diffusion term of the SDE
Args:
x: [batch_dim, ...], data point
t: [batch_dim,], time vector
form: str, form of the diffusion term
norm: float, norm of the diffusion term
"""
t = expand_t_like_x(t, x)
choices = {
"constant": norm,
"SBDM": norm * self.compute_drift(x, t)[1],
"sigma": norm * self.compute_sigma_t(t)[0],
"linear": norm * (1 - t),
"decreasing": 0.25 * (norm * th.cos(np.pi * t) + 1) ** 2,
"inccreasing-decreasing": norm * th.sin(np.pi * t) ** 2,
}
try:
diffusion = choices[form]
except KeyError:
raise NotImplementedError(f"Diffusion form {form} not implemented")
return diffusion
def get_score_from_velocity(self, velocity, x, t):
"""Wrapper function: transfrom velocity prediction model to score
Args:
velocity: [batch_dim, ...] shaped tensor; velocity model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
alpha_t, d_alpha_t = self.compute_alpha_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
score = (reverse_alpha_ratio * velocity - mean) / var
return score
def get_noise_from_velocity(self, velocity, x, t):
"""Wrapper function: transfrom velocity prediction model to denoiser
Args:
velocity: [batch_dim, ...] shaped tensor; velocity model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
alpha_t, d_alpha_t = self.compute_alpha_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = reverse_alpha_ratio * d_sigma_t - sigma_t
noise = (reverse_alpha_ratio * velocity - mean) / var
return noise
def get_velocity_from_score(self, score, x, t):
"""Wrapper function: transfrom score prediction model to velocity
Args:
score: [batch_dim, ...] shaped tensor; score model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
drift, var = self.compute_drift(x, t)
velocity = var * score - drift
return velocity
def compute_mu_t(self, t, x0, x1):
"""Compute the mean of time-dependent density p_t"""
t = expand_t_like_x(t, x1)
alpha_t, _ = self.compute_alpha_t(t)
sigma_t, _ = self.compute_sigma_t(t)
# t*x1 + (1-t)*x0 ; t=0 x0; t=1 x1
return alpha_t * x1 + sigma_t * x0
def compute_xt(self, t, x0, x1):
"""Sample xt from time-dependent density p_t; rng is required"""
xt = self.compute_mu_t(t, x0, x1)
return xt
def compute_ut(self, t, x0, x1, xt):
"""Compute the vector field corresponding to p_t"""
t = expand_t_like_x(t, x1)
_, d_alpha_t = self.compute_alpha_t(t)
_, d_sigma_t = self.compute_sigma_t(t)
return d_alpha_t * x1 + d_sigma_t * x0
def plan(self, t, x0, x1):
xt = self.compute_xt(t, x0, x1)
ut = self.compute_ut(t, x0, x1, xt)
return t, xt, ut
class VPCPlan(ICPlan):
"""class for VP path flow matching"""
def __init__(self, sigma_min=0.1, sigma_max=20.0):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.log_mean_coeff = lambda t: -0.25 * ((1 - t) ** 2) * \
(self.sigma_max - self.sigma_min) - 0.5 * (1 - t) * self.sigma_min
self.d_log_mean_coeff = lambda t: 0.5 * (1 - t) * \
(self.sigma_max - self.sigma_min) + 0.5 * self.sigma_min
def compute_alpha_t(self, t):
"""Compute coefficient of x1"""
alpha_t = self.log_mean_coeff(t)
alpha_t = th.exp(alpha_t)
d_alpha_t = alpha_t * self.d_log_mean_coeff(t)
return alpha_t, d_alpha_t
def compute_sigma_t(self, t):
"""Compute coefficient of x0"""
p_sigma_t = 2 * self.log_mean_coeff(t)
sigma_t = th.sqrt(1 - th.exp(p_sigma_t))
d_sigma_t = th.exp(p_sigma_t) * (2 * self.d_log_mean_coeff(t)) / (-2 * sigma_t)
return sigma_t, d_sigma_t
def compute_d_alpha_alpha_ratio_t(self, t):
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
return self.d_log_mean_coeff(t)
def compute_drift(self, x, t):
"""Compute the drift term of the SDE"""
t = expand_t_like_x(t, x)
beta_t = self.sigma_min + (1 - t) * (self.sigma_max - self.sigma_min)
return -0.5 * beta_t * x, beta_t / 2
class GVPCPlan(ICPlan):
def __init__(self, sigma=0.0):
super().__init__(sigma)
def compute_alpha_t(self, t):
"""Compute coefficient of x1"""
alpha_t = th.sin(t * np.pi / 2)
d_alpha_t = np.pi / 2 * th.cos(t * np.pi / 2)
return alpha_t, d_alpha_t
def compute_sigma_t(self, t):
"""Compute coefficient of x0"""
sigma_t = th.cos(t * np.pi / 2)
d_sigma_t = -np.pi / 2 * th.sin(t * np.pi / 2)
return sigma_t, d_sigma_t
def compute_d_alpha_alpha_ratio_t(self, t):
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
return np.pi / (2 * th.tan(t * np.pi / 2))

View File

@ -0,0 +1,534 @@
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch as th
import numpy as np
import logging
import enum
from . import path
from .utils import EasyDict, log_state, mean_flat
from .integrators import ode, sde
class ModelType(enum.Enum):
"""
Which type of output the model predicts.
"""
NOISE = enum.auto() # the model predicts epsilon
SCORE = enum.auto() # the model predicts \nabla \log p(x)
VELOCITY = enum.auto() # the model predicts v(x)
class PathType(enum.Enum):
"""
Which type of path to use.
"""
LINEAR = enum.auto()
GVP = enum.auto()
VP = enum.auto()
class WeightType(enum.Enum):
"""
Which type of weighting to use.
"""
NONE = enum.auto()
VELOCITY = enum.auto()
LIKELIHOOD = enum.auto()
class Transport:
def __init__(
self,
*,
model_type,
path_type,
loss_type,
train_eps,
sample_eps,
train_sample_type = "uniform",
**kwargs,
):
path_options = {
PathType.LINEAR: path.ICPlan,
PathType.GVP: path.GVPCPlan,
PathType.VP: path.VPCPlan,
}
self.loss_type = loss_type
self.model_type = model_type
self.path_sampler = path_options[path_type]()
self.train_eps = train_eps
self.sample_eps = sample_eps
self.train_sample_type = train_sample_type
if self.train_sample_type == "logit_normal":
self.mean = kwargs['mean']
self.std = kwargs['std']
self.shift_scale = kwargs['shift_scale']
print(f"using logit normal sample, shift scale is {self.shift_scale}")
def prior_logp(self, z):
'''
Standard multivariate normal prior
Assume z is batched
'''
shape = th.tensor(z.size())
N = th.prod(shape[1:])
_fn = lambda x: -N / 2. * np.log(2 * np.pi) - th.sum(x ** 2) / 2.
return th.vmap(_fn)(z)
def check_interval(
self,
train_eps,
sample_eps,
*,
diffusion_form="SBDM",
sde=False,
reverse=False,
eval=False,
last_step_size=0.0,
):
t0 = 0
t1 = 1
eps = train_eps if not eval else sample_eps
if (type(self.path_sampler) in [path.VPCPlan]):
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
elif (type(self.path_sampler) in [path.ICPlan, path.GVPCPlan]) \
and (
self.model_type != ModelType.VELOCITY or sde): # avoid numerical issue by taking a first semi-implicit step
t0 = eps if (diffusion_form == "SBDM" and sde) or self.model_type != ModelType.VELOCITY else 0
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
if reverse:
t0, t1 = 1 - t0, 1 - t1
return t0, t1
def sample(self, x1):
"""Sampling x0 & t based on shape of x1 (if needed)
Args:
x1 - data point; [batch, *dim]
"""
x0 = th.randn_like(x1)
if self.train_sample_type=="uniform":
t0, t1 = self.check_interval(self.train_eps, self.sample_eps)
t = th.rand((x1.shape[0],)) * (t1 - t0) + t0
t = t.to(x1)
elif self.train_sample_type=="logit_normal":
t = th.randn((x1.shape[0],)) * self.std + self.mean
t = t.to(x1)
t = 1/(1+th.exp(-t))
t = np.sqrt(self.shift_scale)*t/(1+(np.sqrt(self.shift_scale)-1)*t)
return t, x0, x1
def training_losses(
self,
model,
x1,
model_kwargs=None
):
"""Loss for training the score model
Args:
- model: backbone model; could be score, noise, or velocity
- x1: datapoint
- model_kwargs: additional arguments for the model
"""
if model_kwargs == None:
model_kwargs = {}
t, x0, x1 = self.sample(x1)
t, xt, ut = self.path_sampler.plan(t, x0, x1)
model_output = model(xt, t, **model_kwargs)
B, *_, C = xt.shape
assert model_output.size() == (B, *xt.size()[1:-1], C)
terms = {}
terms['pred'] = model_output
if self.model_type == ModelType.VELOCITY:
terms['loss'] = mean_flat(((model_output - ut) ** 2))
else:
_, drift_var = self.path_sampler.compute_drift(xt, t)
sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, xt))
if self.loss_type in [WeightType.VELOCITY]:
weight = (drift_var / sigma_t) ** 2
elif self.loss_type in [WeightType.LIKELIHOOD]:
weight = drift_var / (sigma_t ** 2)
elif self.loss_type in [WeightType.NONE]:
weight = 1
else:
raise NotImplementedError()
if self.model_type == ModelType.NOISE:
terms['loss'] = mean_flat(weight * ((model_output - x0) ** 2))
else:
terms['loss'] = mean_flat(weight * ((model_output * sigma_t + x0) ** 2))
return terms
def get_drift(
self
):
"""member function for obtaining the drift of the probability flow ODE"""
def score_ode(x, t, model, **model_kwargs):
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
model_output = model(x, t, **model_kwargs)
return (-drift_mean + drift_var * model_output) # by change of variable
def noise_ode(x, t, model, **model_kwargs):
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))
model_output = model(x, t, **model_kwargs)
score = model_output / -sigma_t
return (-drift_mean + drift_var * score)
def velocity_ode(x, t, model, **model_kwargs):
model_output = model(x, t, **model_kwargs)
return model_output
if self.model_type == ModelType.NOISE:
drift_fn = noise_ode
elif self.model_type == ModelType.SCORE:
drift_fn = score_ode
else:
drift_fn = velocity_ode
def body_fn(x, t, model, **model_kwargs):
model_output = drift_fn(x, t, model, **model_kwargs)
assert model_output.shape == x.shape, "Output shape from ODE solver must match input shape"
return model_output
return body_fn
def get_score(
self,
):
"""member function for obtaining score of
x_t = alpha_t * x + sigma_t * eps"""
if self.model_type == ModelType.NOISE:
score_fn = lambda x, t, model, **kwargs: model(x, t, **kwargs) / - \
self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))[0]
elif self.model_type == ModelType.SCORE:
score_fn = lambda x, t, model, **kwagrs: model(x, t, **kwagrs)
elif self.model_type == ModelType.VELOCITY:
score_fn = lambda x, t, model, **kwargs: self.path_sampler.get_score_from_velocity(model(x, t, **kwargs), x,
t)
else:
raise NotImplementedError()
return score_fn
class Sampler:
"""Sampler class for the transport model"""
def __init__(
self,
transport,
):
"""Constructor for a general sampler; supporting different sampling methods
Args:
- transport: an tranport object specify model prediction & interpolant type
"""
self.transport = transport
self.drift = self.transport.get_drift()
self.score = self.transport.get_score()
def __get_sde_diffusion_and_drift(
self,
*,
diffusion_form="SBDM",
diffusion_norm=1.0,
):
def diffusion_fn(x, t):
diffusion = self.transport.path_sampler.compute_diffusion(x, t, form=diffusion_form, norm=diffusion_norm)
return diffusion
sde_drift = \
lambda x, t, model, **kwargs: \
self.drift(x, t, model, **kwargs) + diffusion_fn(x, t) * self.score(x, t, model, **kwargs)
sde_diffusion = diffusion_fn
return sde_drift, sde_diffusion
def __get_last_step(
self,
sde_drift,
*,
last_step,
last_step_size,
):
"""Get the last step function of the SDE solver"""
if last_step is None:
last_step_fn = \
lambda x, t, model, **model_kwargs: \
x
elif last_step == "Mean":
last_step_fn = \
lambda x, t, model, **model_kwargs: \
x + sde_drift(x, t, model, **model_kwargs) * last_step_size
elif last_step == "Tweedie":
alpha = self.transport.path_sampler.compute_alpha_t # simple aliasing; the original name was too long
sigma = self.transport.path_sampler.compute_sigma_t
last_step_fn = \
lambda x, t, model, **model_kwargs: \
x / alpha(t)[0][0] + (sigma(t)[0][0] ** 2) / alpha(t)[0][0] * self.score(x, t, model,
**model_kwargs)
elif last_step == "Euler":
last_step_fn = \
lambda x, t, model, **model_kwargs: \
x + self.drift(x, t, model, **model_kwargs) * last_step_size
else:
raise NotImplementedError()
return last_step_fn
def sample_sde(
self,
*,
sampling_method="Euler",
diffusion_form="SBDM",
diffusion_norm=1.0,
last_step="Mean",
last_step_size=0.04,
num_steps=250,
):
"""returns a sampling function with given SDE settings
Args:
- sampling_method: type of sampler used in solving the SDE; default to be Euler-Maruyama
- diffusion_form: function form of diffusion coefficient; default to be matching SBDM
- diffusion_norm: function magnitude of diffusion coefficient; default to 1
- last_step: type of the last step; default to identity
- last_step_size: size of the last step; default to match the stride of 250 steps over [0,1]
- num_steps: total integration step of SDE
"""
if last_step is None:
last_step_size = 0.0
sde_drift, sde_diffusion = self.__get_sde_diffusion_and_drift(
diffusion_form=diffusion_form,
diffusion_norm=diffusion_norm,
)
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
diffusion_form=diffusion_form,
sde=True,
eval=True,
reverse=False,
last_step_size=last_step_size,
)
_sde = sde(
sde_drift,
sde_diffusion,
t0=t0,
t1=t1,
num_steps=num_steps,
sampler_type=sampling_method
)
last_step_fn = self.__get_last_step(sde_drift, last_step=last_step, last_step_size=last_step_size)
def _sample(init, model, **model_kwargs):
xs = _sde.sample(init, model, **model_kwargs)
ts = th.ones(init.size(0), device=init.device) * t1
x = last_step_fn(xs[-1], ts, model, **model_kwargs)
xs.append(x)
assert len(xs) == num_steps, "Samples does not match the number of steps"
return xs
return _sample
def sample_ode(
self,
*,
sampling_method="dopri5",
num_steps=50,
atol=1e-6,
rtol=1e-3,
reverse=False,
):
"""returns a sampling function with given ODE settings
Args:
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
- num_steps:
- fixed solver (Euler, Heun): the actual number of integration steps performed
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
- atol: absolute error tolerance for the solver
- rtol: relative error tolerance for the solver
- reverse: whether solving the ODE in reverse (data to noise); default to False
"""
if reverse:
drift = lambda x, t, model, **kwargs: self.drift(x, th.ones_like(t) * (1 - t), model, **kwargs)
else:
drift = self.drift
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
sde=False,
eval=True,
reverse=reverse,
last_step_size=0.0,
)
_ode = ode(
drift=drift,
t0=t0,
t1=t1,
sampler_type=sampling_method,
num_steps=num_steps,
atol=atol,
rtol=rtol,
)
return _ode.sample
def sample_ode_intermediate(
self,
*,
sampling_method="dopri5",
num_steps=50,
atol=1e-6,
rtol=1e-3,
t=0.5,
reverse=False,
):
"""returns a sampling function with given ODE settings
Args:
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
- num_steps:
- fixed solver (Euler, Heun): the actual number of integration steps performed
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
- atol: absolute error tolerance for the solver
- rtol: relative error tolerance for the solver
- reverse: whether solving the ODE in reverse (data to noise); default to False
"""
if reverse:
drift = lambda x, t, model, **kwargs: self.drift(x, th.ones_like(t) * (1 - t), model, **kwargs)
else:
drift = self.drift
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
sde=False,
eval=True,
reverse=reverse,
last_step_size=0.0,
)
_ode = ode(
drift=drift,
t0=t,
t1=t1,
sampler_type=sampling_method,
num_steps=num_steps,
atol=atol,
rtol=rtol,
)
return _ode.sample
def sample_ode_likelihood(
self,
*,
sampling_method="dopri5",
num_steps=50,
atol=1e-6,
rtol=1e-3,
):
"""returns a sampling function for calculating likelihood with given ODE settings
Args:
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
- num_steps:
- fixed solver (Euler, Heun): the actual number of integration steps performed
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
- atol: absolute error tolerance for the solver
- rtol: relative error tolerance for the solver
"""
def _likelihood_drift(x, t, model, **model_kwargs):
x, _ = x
eps = th.randint(2, x.size(), dtype=th.float, device=x.device) * 2 - 1
t = th.ones_like(t) * (1 - t)
with th.enable_grad():
x.requires_grad = True
grad = th.autograd.grad(th.sum(self.drift(x, t, model, **model_kwargs) * eps), x)[0]
logp_grad = th.sum(grad * eps, dim=tuple(range(1, len(x.size()))))
drift = self.drift(x, t, model, **model_kwargs)
return (-drift, logp_grad)
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
sde=False,
eval=True,
reverse=False,
last_step_size=0.0,
)
_ode = ode(
drift=_likelihood_drift,
t0=t0,
t1=t1,
sampler_type=sampling_method,
num_steps=num_steps,
atol=atol,
rtol=rtol,
)
def _sample_fn(x, model, **model_kwargs):
init_logp = th.zeros(x.size(0)).to(x)
input = (x, init_logp)
drift, delta_logp = _ode.sample(input, model, **model_kwargs)
drift, delta_logp = drift[-1], delta_logp[-1]
prior_logp = self.transport.prior_logp(drift)
logp = prior_logp - delta_logp
return logp, drift
return _sample_fn

View File

@ -0,0 +1,54 @@
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch as th
class EasyDict:
def __init__(self, sub_dict):
for k, v in sub_dict.items():
setattr(self, k, v)
def __getitem__(self, key):
return getattr(self, key)
def mean_flat(x):
"""
Take the mean over all non-batch dimensions.
"""
return th.mean(x, dim=list(range(1, len(x.size()))))
def log_state(state):
result = []
sorted_state = dict(sorted(state.items()))
for key, value in sorted_state.items():
# Check if the value is an instance of a class
if "<object" in str(value) or "object at" in str(value):
result.append(f"{key}: [{value.__class__.__name__}]")
else:
result.append(f"{key}: {value}")
return '\n'.join(result)

View File

@ -0,0 +1,792 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import copy
import importlib
import inspect
import os
from typing import List, Optional, Union
import numpy as np
import torch
import trimesh
import yaml
from PIL import Image
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils.import_utils import is_accelerate_version, is_accelerate_available
from tqdm import tqdm
from .models.autoencoders import ShapeVAE
from .models.autoencoders import SurfaceExtractors
from .utils import logger, synchronize_timer, smart_load_model
from comfy.utils import ProgressBar, load_torch_file
import comfy.model_management as mm
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@synchronize_timer('Export to trimesh')
def export_to_trimesh(mesh_output):
if isinstance(mesh_output, list):
outputs = []
for mesh in mesh_output:
if mesh is None:
outputs.append(None)
else:
mesh.mesh_f = mesh.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
outputs.append(mesh_output)
return outputs
else:
mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f)
return mesh_output
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
try:
obj = getattr(importlib.import_module(module, package=os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))), cls)
except:
obj = getattr(importlib.import_module(module, package=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath( __file__ ))))), cls)
return obj
def instantiate_from_config(config, **kwargs):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
cls = get_obj_from_str(config["target"])
params = config.get("params", dict())
kwargs.update(params)
instance = cls(**kwargs)
return instance
class Hunyuan3DDiTPipeline:
model_cpu_offload_seq = "conditioner->model->vae"
_exclude_from_cpu_offload = []
@classmethod
@synchronize_timer('Hunyuan3DDiTPipeline Model Loading')
def from_single_file(
cls,
ckpt_path,
config_path,
device='cuda',
dtype=torch.float16,
use_safetensors=None,
**kwargs,
):
# load config
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# # load ckpt
# if use_safetensors:
# ckpt_path = ckpt_path.replace('.ckpt', '.safetensors')
# if not os.path.exists(ckpt_path):
# raise FileNotFoundError(f"Model file {ckpt_path} not found")
# logger.info(f"Loading model from {ckpt_path}")
# if use_safetensors:
# # parse safetensors
# import safetensors.torch
# safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
# ckpt = {}
# for key, value in safetensors_ckpt.items():
# model_name = key.split('.')[0]
# new_key = key[len(model_name) + 1:]
# if model_name not in ckpt:
# ckpt[model_name] = {}
# ckpt[model_name][new_key] = value
# else:
# ckpt = torch.load(ckpt_path, map_location='cpu', weights_only=True)
ckpt = load_torch_file(ckpt_path)
# load model
model = instantiate_from_config(config['model'])
model.load_state_dict(ckpt['model'])
vae = instantiate_from_config(config['vae'])
vae.load_state_dict(ckpt['vae'], strict=False)
conditioner = instantiate_from_config(config['conditioner'])
if 'conditioner' in ckpt:
conditioner.load_state_dict(ckpt['conditioner'])
image_processor = instantiate_from_config(config['image_processor'])
scheduler = instantiate_from_config(config['scheduler'])
model_kwargs = dict(
vae=vae,
model=model,
scheduler=scheduler,
conditioner=conditioner,
image_processor=image_processor,
device=device,
dtype=dtype,
)
model_kwargs.update(kwargs)
return cls(
**model_kwargs
)
@classmethod
def from_pretrained(
cls,
model_path,
device='cuda',
dtype=torch.float16,
use_safetensors=False,
variant='fp16',
subfolder='hunyuan3d-dit-v2-1',
**kwargs,
):
kwargs['from_pretrained_kwargs'] = dict(
model_path=model_path,
subfolder=subfolder,
use_safetensors=use_safetensors,
variant=variant,
dtype=dtype,
device=device,
)
config_path, ckpt_path = smart_load_model(
model_path,
subfolder=subfolder,
use_safetensors=use_safetensors,
variant=variant
)
return cls.from_single_file(
ckpt_path,
config_path,
device=device,
dtype=dtype,
use_safetensors=use_safetensors,
**kwargs
)
def __init__(
self,
vae,
model,
scheduler,
conditioner,
image_processor,
device='cuda',
dtype=torch.float16,
**kwargs
):
self.vae = vae
self.model = model
self.scheduler = scheduler
self.conditioner = conditioner
self.image_processor = image_processor
self.kwargs = kwargs
self.to(device, dtype)
def compile(self):
self.vae = torch.compile(self.vae)
self.model = torch.compile(self.model)
self.conditioner = torch.compile(self.conditioner)
def enable_flashvdm(
self,
enabled: bool = True,
adaptive_kv_selection=True,
topk_mode='mean',
mc_algo='mc',
replace_vae=True,
):
if enabled:
model_path = self.kwargs['from_pretrained_kwargs']['model_path']
turbo_vae_mapping = {
'Hunyuan3D-2': ('tencent/Hunyuan3D-2', 'hunyuan3d-vae-v2-0-turbo'),
'Hunyuan3D-2mv': ('tencent/Hunyuan3D-2', 'hunyuan3d-vae-v2-0-turbo'),
'Hunyuan3D-2mini': ('tencent/Hunyuan3D-2mini', 'hunyuan3d-vae-v2-mini-turbo'),
}
model_name = model_path.split('/')[-1]
if replace_vae and model_name in turbo_vae_mapping:
model_path, subfolder = turbo_vae_mapping[model_name]
self.vae = ShapeVAE.from_pretrained(
model_path, subfolder=subfolder,
use_safetensors=self.kwargs['from_pretrained_kwargs']['use_safetensors'],
device=self.device,
)
self.vae.enable_flashvdm_decoder(
enabled=enabled,
adaptive_kv_selection=adaptive_kv_selection,
topk_mode=topk_mode,
mc_algo=mc_algo
)
else:
model_path = self.kwargs['from_pretrained_kwargs']['model_path']
vae_mapping = {
'Hunyuan3D-2': ('tencent/Hunyuan3D-2', 'hunyuan3d-vae-v2-0'),
'Hunyuan3D-2mv': ('tencent/Hunyuan3D-2', 'hunyuan3d-vae-v2-0'),
'Hunyuan3D-2mini': ('tencent/Hunyuan3D-2mini', 'hunyuan3d-vae-v2-mini'),
}
model_name = model_path.split('/')[-1]
if model_name in vae_mapping:
model_path, subfolder = vae_mapping[model_name]
self.vae = ShapeVAE.from_pretrained(model_path, subfolder=subfolder)
self.vae.enable_flashvdm_decoder(enabled=False)
def to(self, device=None, dtype=None):
if dtype is not None:
self.dtype = dtype
self.vae.to(dtype=dtype)
self.model.to(dtype=dtype)
self.conditioner.to(dtype=dtype)
if device is not None:
self.device = torch.device(device)
self.vae.to(device)
self.model.to(device)
self.conditioner.to(device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
[`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
Accelerate's module hooks.
"""
for name, model in self.components.items():
if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
continue
if not hasattr(model, "_hf_hook"):
return self.device
for module in model.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
Arguments:
gpu_id (`int`, *optional*):
The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
default to "cuda".
"""
if self.model_cpu_offload_seq is None:
raise ValueError(
"Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
)
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
torch_device = torch.device(device)
device_index = torch_device.index
if gpu_id is not None and device_index is not None:
raise ValueError(
f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of "
f"the device: `device`={torch_device.type}"
)
# _offload_gpu_id should be set to passed gpu_id (or id in passed `device`)
# or default to previously set id or default to 0
self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
device_type = torch_device.type
device = torch.device(f"{device_type}:{self._offload_gpu_id}")
if self.device.type != "cpu":
self.to("cpu")
device_mod = getattr(torch, self.device.type, None)
if hasattr(device_mod, "empty_cache") and device_mod.is_available():
device_mod.empty_cache()
# otherwise we don't see the memory savings (but they probably exist)
all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
self._all_hooks = []
hook = None
for model_str in self.model_cpu_offload_seq.split("->"):
model = all_model_components.pop(model_str, None)
if not isinstance(model, torch.nn.Module):
continue
_, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
self._all_hooks.append(hook)
# CPU offload models that are not in the seq chain unless they are explicitly excluded
# these models will stay on CPU until maybe_free_model_hooks is called
# some models cannot be in the seq chain because they are iteratively called,
# such as controlnet
for name, model in all_model_components.items():
if not isinstance(model, torch.nn.Module):
continue
if name in self._exclude_from_cpu_offload:
model.to(device)
else:
_, hook = cpu_offload_with_hook(model, device)
self._all_hooks.append(hook)
def maybe_free_model_hooks(self):
r"""
Function that offloads all components, removes all model hooks that were added when using
`enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
functions correctly when applying enable_model_cpu_offload.
"""
if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
# `enable_model_cpu_offload` has not be called, so silently do nothing
return
for hook in self._all_hooks:
# offload model and remove hook from model
hook.offload()
hook.remove()
# make sure the model is in the same state as before calling it
self.enable_model_cpu_offload()
@synchronize_timer('Encode cond')
def encode_cond(self, image, additional_cond_inputs, do_classifier_free_guidance, dual_guidance):
bsz = image.shape[0]
cond = self.conditioner(image=image, **additional_cond_inputs)
if do_classifier_free_guidance:
un_cond = self.conditioner.unconditional_embedding(bsz, **additional_cond_inputs)
if dual_guidance:
un_cond_drop_main = copy.deepcopy(un_cond)
un_cond_drop_main['additional'] = cond['additional']
def cat_recursive(a, b, c):
if isinstance(a, torch.Tensor):
return torch.cat([a, b, c], dim=0).to(self.dtype)
out = {}
for k in a.keys():
out[k] = cat_recursive(a[k], b[k], c[k])
return out
cond = cat_recursive(cond, un_cond_drop_main, un_cond)
else:
def cat_recursive(a, b):
if isinstance(a, torch.Tensor):
return torch.cat([a, b], dim=0).to(self.dtype)
out = {}
for k in a.keys():
out[k] = cat_recursive(a[k], b[k])
return out
cond = cat_recursive(cond, un_cond)
return cond
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(self, batch_size, dtype, device, generator, latents=None):
shape = (batch_size, *self.vae.latent_shape)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * getattr(self.scheduler, 'init_noise_sigma', 1.0)
return latents
def prepare_image(self, image, mask=None) -> dict:
if isinstance(image, torch.Tensor) and isinstance(mask, torch.Tensor):
outputs = {
'image': image,
'mask': mask
}
return outputs
if isinstance(image, str) and not os.path.exists(image):
raise FileNotFoundError(f"Couldn't find image at path {image}")
if not isinstance(image, list):
image = [image]
outputs = []
for img in image:
output = self.image_processor(img)
outputs.append(output)
cond_input = {k: [] for k in outputs[0].keys()}
for output in outputs:
for key, value in output.items():
cond_input[key].append(value)
for key, value in cond_input.items():
if isinstance(value[0], torch.Tensor):
cond_input[key] = torch.cat(value, dim=0)
return cond_input
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def set_surface_extractor(self, mc_algo):
if mc_algo is None:
return
logger.info('The parameters `mc_algo` is deprecated, and will be removed in future versions.\n'
'Please use: \n'
'from hy3dshape.models.autoencoders import SurfaceExtractors\n'
'pipeline.vae.surface_extractor = SurfaceExtractors[mc_algo]() instead\n')
if mc_algo not in SurfaceExtractors.keys():
raise ValueError(f"Unknown mc_algo {mc_algo}")
self.vae.surface_extractor = SurfaceExtractors[mc_algo]()
@torch.no_grad()
def __call__(
self,
image: Union[str, List[str], Image.Image] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
eta: float = 0.0,
guidance_scale: float = 7.5,
dual_guidance_scale: float = 10.5,
dual_guidance: bool = True,
generator=None,
box_v=1.01,
octree_resolution=384,
mc_level=-1 / 512,
num_chunks=8000,
mc_algo=None,
output_type: Optional[str] = "trimesh",
enable_pbar=True,
**kwargs,
) -> List[List[trimesh.Trimesh]]:
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
self.set_surface_extractor(mc_algo)
device = self.device
dtype = self.dtype
do_classifier_free_guidance = guidance_scale >= 0 and \
getattr(self.model, 'guidance_cond_proj_dim', None) is None
dual_guidance = dual_guidance_scale >= 0 and dual_guidance
if isinstance(image, torch.Tensor):
pass
else:
cond_inputs = self.prepare_image(image)
image = cond_inputs.pop('image')
cond = self.encode_cond(
image=image,
additional_cond_inputs=cond_inputs,
do_classifier_free_guidance=do_classifier_free_guidance,
dual_guidance=False,
)
batch_size = image.shape[0]
t_dtype = torch.long
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas)
latents = self.prepare_latents(batch_size, dtype, device, generator)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
guidance_cond = None
if getattr(self.model, 'guidance_cond_proj_dim', None) is not None:
logger.info('Using lcm guidance scale')
guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size)
guidance_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim
).to(device=device, dtype=latents.dtype)
with synchronize_timer('Diffusion Sampling'):
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:", leave=False)):
# expand the latents if we are doing classifier free guidance
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * (3 if dual_guidance else 2))
else:
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
timestep_tensor = torch.tensor([t], dtype=t_dtype, device=device)
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
noise_pred = self.model(latent_model_input, timestep_tensor, cond, guidance_cond=guidance_cond)
# no drop, drop clip, all drop
if do_classifier_free_guidance:
if dual_guidance:
noise_pred_clip, noise_pred_dino, noise_pred_uncond = noise_pred.chunk(3)
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_clip - noise_pred_dino)
+ dual_guidance_scale * (noise_pred_dino - noise_pred_uncond)
)
else:
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
outputs = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
latents = outputs.prev_sample
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, outputs)
return self._export(
latents,
output_type,
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
)
def _export(
self,
latents,
output_type='trimesh',
box_v=1.01,
mc_level=0.0,
num_chunks=20000,
octree_resolution=256,
mc_algo='mc',
enable_pbar=True
):
if not output_type == "latent":
latents = 1. / self.vae.scale_factor * latents
latents = self.vae(latents)
outputs = self.vae.latents2mesh(
latents,
bounds=box_v,
mc_level=mc_level,
num_chunks=num_chunks,
octree_resolution=octree_resolution,
mc_algo=mc_algo,
enable_pbar=enable_pbar,
)
else:
outputs = latents
if output_type == 'trimesh':
outputs = export_to_trimesh(outputs)
return outputs
class Hunyuan3DDiTFlowMatchingPipeline(Hunyuan3DDiTPipeline):
@torch.inference_mode()
def __call__(
self,
image: Union[str, List[str], Image.Image, dict, List[dict], torch.Tensor] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
eta: float = 0.0,
guidance_scale: float = 5.0,
generator=None,
box_v=1.01,
octree_resolution=384,
mc_level=0.0,
mc_algo=None,
num_chunks=8000,
output_type: Optional[str] = "trimesh",
enable_pbar=True,
mask = None,
**kwargs,
) -> List[List[trimesh.Trimesh]]:
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
self.set_surface_extractor(mc_algo)
device = self.device
dtype = self.dtype
do_classifier_free_guidance = guidance_scale >= 0 and not (
hasattr(self.model, 'guidance_embed') and
self.model.guidance_embed is True
)
# print('image', type(image), 'mask', type(mask))
cond_inputs = self.prepare_image(image, mask)
image = cond_inputs.pop('image')
cond = self.encode_cond(
image=image,
additional_cond_inputs=cond_inputs,
do_classifier_free_guidance=do_classifier_free_guidance,
dual_guidance=False,
)
batch_size = image.shape[0]
# 5. Prepare timesteps
# NOTE: this is slightly different from common usage, we start from 0.
sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
latents = self.prepare_latents(batch_size, dtype, device, generator)
guidance = None
if hasattr(self.model, 'guidance_embed') and \
self.model.guidance_embed is True:
guidance = torch.tensor([guidance_scale] * batch_size, device=device, dtype=dtype)
# logger.info(f'Using guidance embed with scale {guidance_scale}')
with synchronize_timer('Diffusion Sampling'):
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")):
# expand the latents if we are doing classifier free guidance
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
else:
latent_model_input = latents
# NOTE: we assume model get timesteps ranged from 0 to 1
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
timestep = timestep / self.scheduler.config.num_train_timesteps
noise_pred = self.model(latent_model_input, timestep, cond, guidance=guidance)
if do_classifier_free_guidance:
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
outputs = self.scheduler.step(noise_pred, t, latents)
latents = outputs.prev_sample
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, outputs)
return self._export(
latents,
output_type,
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
enable_pbar=enable_pbar,
)

View File

@ -0,0 +1,202 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import tempfile
from typing import Union
import numpy as np
import pymeshlab
import torch
import trimesh
from .models.autoencoders import Latent2MeshOutput
from .utils import synchronize_timer
def load_mesh(path):
if path.endswith(".glb"):
mesh = trimesh.load(path)
else:
mesh = pymeshlab.MeshSet()
mesh.load_new_mesh(path)
return mesh
def reduce_face(mesh: pymeshlab.MeshSet, max_facenum: int = 200000):
if max_facenum > mesh.current_mesh().face_number():
return mesh
mesh.apply_filter(
"meshing_decimation_quadric_edge_collapse",
targetfacenum=max_facenum,
qualitythr=1.0,
preserveboundary=True,
boundaryweight=3,
preservenormal=True,
preservetopology=True,
autoclean=True
)
return mesh
def remove_floater(mesh: pymeshlab.MeshSet):
mesh.apply_filter("compute_selection_by_small_disconnected_components_per_face",
nbfaceratio=0.005)
mesh.apply_filter("compute_selection_transfer_face_to_vertex", inclusive=False)
mesh.apply_filter("meshing_remove_selected_vertices_and_faces")
return mesh
def pymeshlab2trimesh(mesh: pymeshlab.MeshSet):
with tempfile.NamedTemporaryFile(suffix='.ply', delete=False) as temp_file:
mesh.save_current_mesh(temp_file.name)
mesh = trimesh.load(temp_file.name)
# 检查加载的对象类型
if isinstance(mesh, trimesh.Scene):
combined_mesh = trimesh.Trimesh()
# 如果是Scene遍历所有的geometry并合并
for geom in mesh.geometry.values():
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
mesh = combined_mesh
return mesh
def trimesh2pymeshlab(mesh: trimesh.Trimesh):
with tempfile.NamedTemporaryFile(suffix='.ply', delete=False) as temp_file:
if isinstance(mesh, trimesh.scene.Scene):
for idx, obj in enumerate(mesh.geometry.values()):
if idx == 0:
temp_mesh = obj
else:
temp_mesh = temp_mesh + obj
mesh = temp_mesh
mesh.export(temp_file.name)
mesh = pymeshlab.MeshSet()
mesh.load_new_mesh(temp_file.name)
return mesh
def export_mesh(input, output):
if isinstance(input, pymeshlab.MeshSet):
mesh = output
elif isinstance(input, Latent2MeshOutput):
output = Latent2MeshOutput()
output.mesh_v = output.current_mesh().vertex_matrix()
output.mesh_f = output.current_mesh().face_matrix()
mesh = output
else:
mesh = pymeshlab2trimesh(output)
return mesh
def import_mesh(mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str]) -> pymeshlab.MeshSet:
if isinstance(mesh, str):
mesh = load_mesh(mesh)
elif isinstance(mesh, Latent2MeshOutput):
mesh = pymeshlab.MeshSet()
mesh_pymeshlab = pymeshlab.Mesh(vertex_matrix=mesh.mesh_v, face_matrix=mesh.mesh_f)
mesh.add_mesh(mesh_pymeshlab, "converted_mesh")
if isinstance(mesh, (trimesh.Trimesh, trimesh.scene.Scene)):
mesh = trimesh2pymeshlab(mesh)
return mesh
class FaceReducer:
@synchronize_timer('FaceReducer')
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
max_facenum: int = 40000
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh]:
ms = import_mesh(mesh)
ms = reduce_face(ms, max_facenum=max_facenum)
mesh = export_mesh(mesh, ms)
return mesh
class FloaterRemover:
@synchronize_timer('FloaterRemover')
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput]:
ms = import_mesh(mesh)
ms = remove_floater(ms)
mesh = export_mesh(mesh, ms)
return mesh
class DegenerateFaceRemover:
@synchronize_timer('DegenerateFaceRemover')
def __call__(
self,
mesh: Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput, str],
) -> Union[pymeshlab.MeshSet, trimesh.Trimesh, Latent2MeshOutput]:
ms = import_mesh(mesh)
with tempfile.NamedTemporaryFile(suffix='.ply', delete=False) as temp_file:
ms.save_current_mesh(temp_file.name)
ms = pymeshlab.MeshSet()
ms.load_new_mesh(temp_file.name)
mesh = export_mesh(mesh, ms)
return mesh
def mesh_normalize(mesh):
"""
Normalize mesh vertices to sphere
"""
scale_factor = 1.2
vtx_pos = np.asarray(mesh.vertices)
max_bb = (vtx_pos - 0).max(0)[0]
min_bb = (vtx_pos - 0).min(0)[0]
center = (max_bb + min_bb) / 2
scale = torch.norm(torch.tensor(vtx_pos - center, dtype=torch.float32), dim=1).max() * 2.0
vtx_pos = (vtx_pos - center) * (scale_factor / float(scale))
mesh.vertices = vtx_pos
return mesh
class MeshSimplifier:
def __init__(self, executable: str = None):
if executable is None:
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
executable = os.path.join(CURRENT_DIR, "mesh_simplifier.bin")
self.executable = executable
@synchronize_timer('MeshSimplifier')
def __call__(
self,
mesh: Union[trimesh.Trimesh],
) -> Union[trimesh.Trimesh]:
with tempfile.NamedTemporaryFile(suffix='.obj', delete=False) as temp_input:
with tempfile.NamedTemporaryFile(suffix='.obj', delete=False) as temp_output:
mesh.export(temp_input.name)
os.system(f'{self.executable} {temp_input.name} {temp_output.name}')
ms = trimesh.load(temp_output.name, process=False)
if isinstance(ms, trimesh.Scene):
combined_mesh = trimesh.Trimesh()
for geom in ms.geometry.values():
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
ms = combined_mesh
ms = mesh_normalize(ms)
return ms

View File

@ -0,0 +1,167 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import cv2
import numpy as np
import torch
from PIL import Image
from einops import repeat, rearrange
def array_to_tensor(np_array):
image_pt = torch.tensor(np_array).float()
image_pt = image_pt / 255 * 2 - 1
image_pt = rearrange(image_pt, "h w c -> c h w")
image_pts = repeat(image_pt, "c h w -> b c h w", b=1)
return image_pts
class ImageProcessorV2:
def __init__(self, size=512, border_ratio=None):
self.size = size
self.border_ratio = border_ratio
@staticmethod
def recenter(image, border_ratio: float = 0.2):
""" recenter an image to leave some empty space at the image border.
Args:
image (ndarray): input image, float/uint8 [H, W, 3/4]
mask (ndarray): alpha mask, bool [H, W]
border_ratio (float, optional): border ratio, image will be resized to (1 - border_ratio). Defaults to 0.2.
Returns:
ndarray: output image, float/uint8 [H, W, 3/4]
"""
if image.shape[-1] == 4:
mask = image[..., 3]
else:
mask = np.ones_like(image[..., 0:1]) * 255
image = np.concatenate([image, mask], axis=-1)
mask = mask[..., 0]
H, W, C = image.shape
size = max(H, W)
result = np.zeros((size, size, C), dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
if h == 0 or w == 0:
raise ValueError('input image is empty')
desired_size = int(size * (1 - border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (size - h2) // 2
x2_max = x2_min + h2
y2_min = (size - w2) // 2
y2_max = y2_min + w2
result[x2_min:x2_max, y2_min:y2_max] = cv2.resize(image[x_min:x_max, y_min:y_max], (w2, h2),
interpolation=cv2.INTER_AREA)
bg = np.ones((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255
mask = result[..., 3:].astype(np.float32) / 255
result = result[..., :3] * mask + bg * (1 - mask)
mask = mask * 255
result = result.clip(0, 255).astype(np.uint8)
mask = mask.clip(0, 255).astype(np.uint8)
return result, mask
def load_image(self, image, border_ratio=0.15, to_tensor=True):
if isinstance(image, str):
image = cv2.imread(image, cv2.IMREAD_UNCHANGED)
image, mask = self.recenter(image, border_ratio=border_ratio)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
elif isinstance(image, Image.Image):
image = image.convert("RGBA")
image = np.asarray(image)
image, mask = self.recenter(image, border_ratio=border_ratio)
image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_CUBIC)
mask = cv2.resize(mask, (self.size, self.size), interpolation=cv2.INTER_NEAREST)
mask = mask[..., np.newaxis]
if to_tensor:
image = array_to_tensor(image)
mask = array_to_tensor(mask)
return image, mask
def __call__(self, image, border_ratio=0.15, to_tensor=True, **kwargs):
if self.border_ratio is not None:
border_ratio = self.border_ratio
image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
outputs = {
'image': image,
'mask': mask
}
return outputs
class MVImageProcessorV2(ImageProcessorV2):
"""
view order: front, front clockwise 90, back, front clockwise 270
"""
return_view_idx = True
def __init__(self, size=512, border_ratio=None):
super().__init__(size, border_ratio)
self.view2idx = {
'front': 0,
'left': 1,
'back': 2,
'right': 3
}
def __call__(self, image_dict, border_ratio=0.15, to_tensor=True, **kwargs):
if self.border_ratio is not None:
border_ratio = self.border_ratio
images = []
masks = []
view_idxs = []
for idx, (view_tag, image) in enumerate(image_dict.items()):
view_idxs.append(self.view2idx[view_tag])
image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
images.append(image)
masks.append(mask)
zipped_lists = zip(view_idxs, images, masks)
sorted_zipped_lists = sorted(zipped_lists)
view_idxs, images, masks = zip(*sorted_zipped_lists)
image = torch.cat(images, 0).unsqueeze(0)
mask = torch.cat(masks, 0).unsqueeze(0)
outputs = {
'image': image,
'mask': mask,
'view_idxs': view_idxs
}
return outputs
IMAGE_PROCESSORS = {
"v2": ImageProcessorV2,
'mv_v2': MVImageProcessorV2,
}
DEFAULT_IMAGEPROCESSOR = 'v2'

View File

@ -0,0 +1,25 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from PIL import Image
from rembg import remove, new_session
class BackgroundRemover():
def __init__(self):
self.session = new_session()
def __call__(self, image: Image.Image):
output = remove(image, session=self.session, bgcolor=[255, 255, 255, 0])
return output

View File

@ -0,0 +1,480 @@
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
NOTE: this is very similar to diffusers.FlowMatchEulerDiscreteScheduler. Except our timesteps are reversed
Euler scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
):
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32).copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
if not use_dynamic_shifting:
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_noise(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Forward process in flow-matching
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
if sample.device.type == "mps" and torch.is_floating_point(timestep):
# mps does not support float64
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
timestep = timestep.to(sample.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(sample.device)
timestep = timestep.to(sample.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timestep.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timestep.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(sample.shape):
sigma = sigma.unsqueeze(-1)
sample = sigma * noise + (1.0 - sigma) * sample
return sample
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
self.timesteps = timesteps.to(device=device)
self.sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
prev_sample = sample + (sigma_next - sigma) * model_output
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
def __len__(self):
return self.config.num_train_timesteps
@dataclass
class ConsistencyFlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
prev_sample: torch.FloatTensor
pred_original_sample: torch.FloatTensor
class ConsistencyFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
pcm_timesteps: int = 50,
):
sigmas = np.linspace(0, 1, num_train_timesteps)
step_ratio = num_train_timesteps // pcm_timesteps
euler_timesteps = (np.arange(1, pcm_timesteps) * step_ratio).round().astype(np.int64) - 1
euler_timesteps = np.asarray([0] + euler_timesteps.tolist())
self.euler_timesteps = euler_timesteps
self.sigmas = sigmas[self.euler_timesteps]
self.sigmas = torch.from_numpy((self.sigmas.copy())).to(dtype=torch.float32)
self.timesteps = self.sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps if num_inference_steps is not None else len(sigmas)
inference_indices = np.linspace(
0, self.config.pcm_timesteps, num=self.num_inference_steps, endpoint=False
)
inference_indices = np.floor(inference_indices).astype(np.int64)
inference_indices = torch.from_numpy(inference_indices).long()
self.sigmas_ = self.sigmas[inference_indices]
timesteps = self.sigmas_ * self.config.num_train_timesteps
self.timesteps = timesteps.to(device=device)
self.sigmas_ = torch.cat(
[self.sigmas_, torch.ones(1, device=self.sigmas_.device)]
)
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[ConsistencyFlowMatchEulerDiscreteSchedulerOutput, Tuple]:
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
sample = sample.to(torch.float32)
sigma = self.sigmas_[self.step_index]
sigma_next = self.sigmas_[self.step_index + 1]
prev_sample = sample + (sigma_next - sigma) * model_output
prev_sample = prev_sample.to(model_output.dtype)
pred_original_sample = sample + (1.0 - sigma) * model_output
pred_original_sample = pred_original_sample.to(model_output.dtype)
self._step_index += 1
if not return_dict:
return (prev_sample,)
return ConsistencyFlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample,
pred_original_sample=pred_original_sample)
def __len__(self):
return self.config.num_train_timesteps

View File

@ -0,0 +1,234 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
import torch
import trimesh
def normalize_mesh(mesh, scale=0.9999):
"""
Normalize the mesh to fit inside a centered cube with a specified scale.
The mesh is translated so that its bounding box center is at the origin,
then uniformly scaled so that the longest side of the bounding box fits within [-scale, scale].
Args:
mesh (trimesh.Trimesh): Input mesh to normalize.
scale (float, optional): Scaling factor to slightly shrink the mesh inside the unit cube. Default is 0.9999.
Returns:
trimesh.Trimesh: The normalized mesh with applied translation and scaling.
"""
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
scale_ = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale(1 / scale_ * 2 * scale)
return mesh
def sample_pointcloud(mesh, num=200000):
"""
Sample points uniformly from the surface of the mesh along with their corresponding face normals.
Args:
mesh (trimesh.Trimesh): Input mesh to sample from.
num (int, optional): Number of points to sample. Default is 200000.
Returns:
Tuple[torch.Tensor, torch.Tensor]:
- points: Sampled points as a float tensor of shape (num, 3).
- normals: Corresponding normals as a float tensor of shape (num, 3).
"""
points, face_idx = mesh.sample(num, return_index=True)
normals = mesh.face_normals[face_idx]
points = torch.from_numpy(points.astype(np.float32))
normals = torch.from_numpy(normals.astype(np.float32))
return points, normals
def load_surface(mesh, num_points=8192):
"""
Normalize the mesh, sample points and normals from its surface, and randomly select a subset.
Args:
mesh (trimesh.Trimesh): Input mesh to process.
num_points (int, optional): Number of points to randomly select
from the sampled surface points. Default is 8192.
Returns:
Tuple[torch.Tensor, trimesh.Trimesh]:
- surface: Tensor of shape (1, num_points, 6), concatenating points and normals.
- mesh: The normalized mesh.
"""
mesh = normalize_mesh(mesh, scale=0.98)
surface, normal = sample_pointcloud(mesh)
rng = np.random.default_rng(seed=0)
ind = rng.choice(surface.shape[0], num_points, replace=False)
surface = torch.FloatTensor(surface[ind])
normal = torch.FloatTensor(normal[ind])
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0)
return surface, mesh
def sharp_sample_pointcloud(mesh, num=16384):
"""
Sample points and normals preferentially from sharp edges of the mesh.
Sharp edges are detected based on the angle between vertex normals and face normals.
Points are sampled along these edges proportionally to edge length.
Args:
mesh (trimesh.Trimesh): Input mesh to sample from.
num (int, optional): Number of points to sample from sharp edges. Default is 16384.
Returns:
Tuple[np.ndarray, np.ndarray]:
- samples: Sampled points along sharp edges, shape (num, 3).
- normals: Corresponding interpolated normals, shape (num, 3).
"""
V = mesh.vertices
N = mesh.face_normals
VN = mesh.vertex_normals
F = mesh.faces
VN2 = np.ones(V.shape[0])
for i in range(3):
dot = np.stack((VN2[F[:, i]], np.sum(VN[F[:, i]] * N, axis=-1)), axis=-1)
VN2[F[:, i]] = np.min(dot, axis=-1)
sharp_mask = VN2 < 0.985
# collect edge
edge_a = np.concatenate((F[:, 0], F[:, 1], F[:, 2]))
edge_b = np.concatenate((F[:, 1], F[:, 2], F[:, 0]))
sharp_edge = ((sharp_mask[edge_a] * sharp_mask[edge_b]))
edge_a = edge_a[sharp_edge > 0]
edge_b = edge_b[sharp_edge > 0]
sharp_verts_a = V[edge_a]
sharp_verts_b = V[edge_b]
sharp_verts_an = VN[edge_a]
sharp_verts_bn = VN[edge_b]
weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1)
weights /= np.sum(weights)
random_number = np.random.rand(num)
w = np.random.rand(num, 1)
index = np.searchsorted(weights.cumsum(), random_number)
samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index]
normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index]
return samples, normals
def load_surface_sharpegde(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag=True):
try:
mesh_full = trimesh.util.concatenate(mesh.dump())
except Exception as err:
mesh_full = trimesh.util.concatenate(mesh)
mesh_full = normalize_mesh(mesh_full)
origin_num = mesh_full.faces.shape[0]
original_vertices = mesh_full.vertices
original_faces = mesh_full.faces
mesh = trimesh.Trimesh(vertices=original_vertices, faces=original_faces[:origin_num])
mesh_fill = trimesh.Trimesh(vertices=original_vertices, faces=original_faces[origin_num:])
area = mesh.area
area_fill = mesh_fill.area
sample_num = 499712 // 2
num_fill = int(sample_num * (area_fill / (area + area_fill)))
num = sample_num - num_fill
random_surface, random_normal = sample_pointcloud(mesh, num=num)
if num_fill == 0:
random_surface_fill, random_normal_fill = np.zeros((0, 3)), np.zeros((0, 3))
else:
random_surface_fill, random_normal_fill = sample_pointcloud(mesh_fill, num=num_fill)
random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num)
# save_surface
surface = np.concatenate((random_surface, random_normal), axis=1).astype(np.float16)
surface_fill = np.concatenate((random_surface_fill, random_normal_fill), axis=1).astype(np.float16)
sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(np.float16)
surface = np.concatenate((surface, surface_fill), axis=0)
if sharpedge_flag:
sharpedge_label = np.zeros((surface.shape[0], 1))
surface = np.concatenate((surface, sharpedge_label), axis=1)
sharpedge_label = np.ones((sharp_surface.shape[0], 1))
sharp_surface = np.concatenate((sharp_surface, sharpedge_label), axis=1)
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], num_points, replace=False)
surface = torch.FloatTensor(surface[ind])
ind = rng.choice(sharp_surface.shape[0], num_sharp_points, replace=False)
sharp_surface = torch.FloatTensor(sharp_surface[ind])
return torch.cat([surface, sharp_surface], dim=0).unsqueeze(0), mesh_full
class SurfaceLoader:
def __init__(self, num_points=8192):
self.num_points = num_points
def __call__(self, mesh_or_mesh_path, num_points=None):
if num_points is None:
num_points = self.num_points
mesh = mesh_or_mesh_path
if isinstance(mesh, str):
mesh = trimesh.load(mesh, force="mesh", merge_primitives=True)
if isinstance(mesh, trimesh.scene.Scene):
for idx, obj in enumerate(mesh.geometry.values()):
if idx == 0:
temp_mesh = obj
else:
temp_mesh = temp_mesh + obj
mesh = temp_mesh
surface, mesh = load_surface(mesh, num_points=num_points)
return surface
class SharpEdgeSurfaceLoader:
def __init__(self, num_uniform_points=8192, num_sharp_points=8192, **kwargs):
self.num_uniform_points = num_uniform_points
self.num_sharp_points = num_sharp_points
self.num_points = num_uniform_points + num_sharp_points
def __call__(self, mesh_or_mesh_path, num_uniform_points=None, num_sharp_points=None):
if num_uniform_points is None:
num_uniform_points = self.num_uniform_points
if num_sharp_points is None:
num_sharp_points = self.num_sharp_points
mesh = mesh_or_mesh_path
if isinstance(mesh, str):
mesh = trimesh.load(mesh, force="mesh", merge_primitives=True)
if isinstance(mesh, trimesh.scene.Scene):
for idx, obj in enumerate(mesh.geometry.values()):
if idx == 0:
temp_mesh = obj
else:
temp_mesh = temp_mesh + obj
mesh = temp_mesh
surface, mesh = load_surface_sharpegde(mesh, num_points=num_uniform_points, num_sharp_points=num_sharp_points)
return surface

View File

@ -0,0 +1,5 @@
# -*- coding: utf-8 -*-
from .misc import get_config_from_file
from .misc import instantiate_from_config
from .utils import get_logger, logger, synchronize_timer, smart_load_model

View File

@ -0,0 +1,76 @@
import torch
from torch import nn
class LitEma(nn.Module):
def __init__(self, model, decay=0.9999, use_num_updates=True):
super().__init__()
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.m_name2s_name = {}
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_updates
else torch.tensor(-1, dtype=torch.int))
for name, p in model.named_parameters():
if p.requires_grad:
# remove as '.'-character is not allowed in buffers
s_name = name.replace('.', '_____')
self.m_name2s_name.update({name: s_name})
self.register_buffer(s_name, p.clone().detach().data)
self.collected_params = []
def forward(self, model):
decay = self.decay
if self.num_updates >= 0:
self.num_updates += 1
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
sname = self.m_name2s_name[key]
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
else:
assert not key in self.m_name2s_name
def copy_to(self, model):
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
else:
assert not key in self.m_name2s_name
def store(self, model):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in model.parameters()]
def restore(self, model):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, model.parameters()):
param.data.copy_(c_param.data)

View File

@ -0,0 +1,125 @@
# -*- coding: utf-8 -*-
import importlib
from omegaconf import OmegaConf, DictConfig, ListConfig
import torch
import torch.distributed as dist
from typing import Union
def get_config_from_file(config_file: str) -> Union[DictConfig, ListConfig]:
config_file = OmegaConf.load(config_file)
if 'base_config' in config_file.keys():
if config_file['base_config'] == "default_base":
base_config = OmegaConf.create()
# base_config = get_default_config()
elif config_file['base_config'].endswith(".yaml"):
base_config = get_config_from_file(config_file['base_config'])
else:
raise ValueError(f"{config_file} must be `.yaml` file or it contains `base_config` key.")
config_file = {key: value for key, value in config_file if key != "base_config"}
return OmegaConf.merge(base_config, config_file)
return config_file
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_obj_from_config(config):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])
def instantiate_from_config(config, **kwargs):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
cls = get_obj_from_str(config["target"])
if config.get("from_pretrained", None):
return cls.from_pretrained(
config["from_pretrained"],
use_safetensors=config.get('use_safetensors', False),
variant=config.get('variant', 'fp16'))
params = config.get("params", dict())
# params.update(kwargs)
# instance = cls(**params)
kwargs.update(params)
instance = cls(**kwargs)
return instance
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def instantiate_non_trainable_model(config):
model = instantiate_from_config(config)
model = model.eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
return model
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def all_gather_batch(tensors):
"""
Performs all_gather operation on the provided tensors.
"""
# Queue the gathered tensors
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_list = []
output_tensor = []
for tensor in tensors:
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
dist.all_gather(
tensor_all,
tensor,
async_op=False # performance opt
)
tensor_list.append(tensor_all)
for tensor_all in tensor_list:
output_tensor.append(torch.cat(tensor_all, dim=0))
return output_tensor

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1,213 @@
# ------------------------------------------------------------------------------------
# Modified from Taming Transformers (https://github.com/CompVis/taming-transformers)
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer. All Rights Reserved.
# ------------------------------------------------------------------------------------
import os
import time
import wandb
import numpy as np
from PIL import Image
from pathlib import Path
from omegaconf import OmegaConf, DictConfig
from typing import Tuple, Generic, Dict, Callable, Optional, Any
from pprint import pprint
import torch
import torchvision
import pytorch_lightning as pl
import pytorch_lightning.loggers
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.loggers.logger import DummyLogger
from pytorch_lightning.utilities import rank_zero_only, rank_zero_info
from pytorch_lightning.callbacks import Callback
from functools import wraps
def node_zero_only(fn: Callable) -> Callable:
@wraps(fn)
def wrapped_fn(*args, **kwargs) -> Optional[Any]:
if node_zero_only.node == 0:
return fn(*args, **kwargs)
return None
return wrapped_fn
node_zero_only.node = getattr(node_zero_only, 'node', int(os.environ.get('NODE_RANK', 0)))
def node_zero_experiment(fn: Callable) -> Callable:
"""Returns the real experiment on rank 0 and otherwise the DummyExperiment."""
@wraps(fn)
def experiment(self):
@node_zero_only
def get_experiment():
return fn(self)
return get_experiment() or DummyLogger.experiment
return experiment
# customize wandb for node 0 only
class MyWandbLogger(WandbLogger):
@WandbLogger.experiment.getter
@node_zero_experiment
def experiment(self):
return super().experiment
class SetupCallback(Callback):
def __init__(self, config: DictConfig, exp_config: DictConfig,
basedir: Path, logdir: str = "log", ckptdir: str = "ckpt") -> None:
super().__init__()
self.logdir = basedir / logdir
self.ckptdir = basedir / ckptdir
self.config = config
self.exp_config = exp_config
# def on_pretrain_routine_start(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule) -> None:
# if trainer.global_rank == 0:
# # Create logdirs and save configs
# os.makedirs(self.logdir, exist_ok=True)
# os.makedirs(self.ckptdir, exist_ok=True)
#
# print("Experiment config")
# print(self.exp_config.pretty())
#
# print("Model config")
# print(self.config.pretty())
def on_fit_start(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule) -> None:
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
# print("Experiment config")
# pprint(self.exp_config)
#
# print("Model config")
# pprint(self.config)
class ImageLogger(Callback):
def __init__(self, batch_frequency: int, max_images: int, clamp: bool = True,
increase_log_steps: bool = True) -> None:
super().__init__()
self.batch_freq = batch_frequency
self.max_images = max_images
self.logger_log_images = {
pl.loggers.WandbLogger: self._wandb,
pl.loggers.TestTubeLogger: self._testtube,
}
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
@rank_zero_only
def _wandb(self, pl_module, images, batch_idx, split):
# raise ValueError("No way wandb")
grids = dict()
for k in images:
grid = torchvision.utils.make_grid(images[k])
grids[f"{split}/{k}"] = wandb.Image(grid)
pl_module.logger.experiment.log(grids)
@rank_zero_only
def _testtube(self, pl_module, images, batch_idx, split):
for k in images:
grid = torchvision.utils.make_grid(images[k])
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
tag = f"{split}/{k}"
pl_module.logger.experiment.add_image(
tag, grid,
global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, save_dir: str, split: str, images: Dict,
global_step: int, current_epoch: int, batch_idx: int) -> None:
root = os.path.join(save_dir, "results", split)
os.makedirs(root, exist_ok=True)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k,
global_step,
current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
def log_img(self, pl_module: pl.LightningModule, batch: Tuple[torch.LongTensor, torch.FloatTensor], batch_idx: int,
split: str = "train") -> None:
if (self.check_frequency(batch_idx) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and
self.max_images > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split=split, pl_module=pl_module)
for k in images:
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N].detach().cpu()
if self.clamp:
images[k] = images[k].clamp(0, 1)
self.log_local(pl_module.logger.save_dir, split, images,
pl_module.global_step, pl_module.current_epoch, batch_idx)
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
logger_log_images(pl_module, images, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, batch_idx: int) -> bool:
if (batch_idx % self.batch_freq) == 0 or (batch_idx in self.log_steps):
try:
self.log_steps.pop(0)
except IndexError:
pass
return True
return False
def on_train_batch_end(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule,
outputs: Generic, batch: Tuple[torch.LongTensor, torch.FloatTensor], batch_idx: int) -> None:
self.log_img(pl_module, batch, batch_idx, split="train")
def on_validation_batch_end(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule,
outputs: Generic, batch: Tuple[torch.LongTensor, torch.FloatTensor],
dataloader_idx: int, batch_idx: int) -> None:
self.log_img(pl_module, batch, batch_idx, split="val")
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
torch.cuda.synchronize(trainer.root_gpu)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module, outputs):
torch.cuda.synchronize(trainer.root_gpu)
max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass

View File

@ -0,0 +1,53 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
class BaseScheduler(object):
def schedule(self, n, **kwargs):
raise NotImplementedError
class LambdaWarmUpCosineFactorScheduler(BaseScheduler):
"""
note: use with a base_lr of 1.0
"""
def __init__(self, warm_up_steps, f_min, f_max, f_start, max_decay_steps, verbosity_interval=0, **ignore_kwargs):
self.lr_warm_up_steps = warm_up_steps
self.f_start = f_start
self.f_min = f_min
self.f_max = f_max
self.lr_max_decay_steps = max_decay_steps
self.last_f = 0.
self.verbosity_interval = verbosity_interval
def schedule(self, n, **kwargs):
if self.verbosity_interval > 0:
if n % self.verbosity_interval == 0:
print(f"current step: {n}, recent lr-multiplier: {self.f_start}")
if n < self.lr_warm_up_steps:
f = (self.f_max - self.f_start) / self.lr_warm_up_steps * n + self.f_start
self.last_f = f
return f
else:
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
t = min(t, 1.0)
f = self.f_min + 0.5 * (self.f_max - self.f_min) * (1 + np.cos(t * np.pi))
self.last_f = f
return f
def __call__(self, n, **kwargs):
return self.schedule(n, **kwargs)

View File

@ -0,0 +1,128 @@
# -*- coding: utf-8 -*-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import cv2
import numpy as np
import PIL.Image
from typing import Optional
import trimesh
def save_obj(pointnp_px3, facenp_fx3, fname):
fid = open(fname, "w")
write_str = ""
for pidx, p in enumerate(pointnp_px3):
pp = p
write_str += "v %f %f %f\n" % (pp[0], pp[1], pp[2])
for i, f in enumerate(facenp_fx3):
f1 = f + 1
write_str += "f %d %d %d\n" % (f1[0], f1[1], f1[2])
fid.write(write_str)
fid.close()
return
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, tex_map, fname):
fol, na = os.path.split(fname)
na, _ = os.path.splitext(na)
matname = "%s/%s.mtl" % (fol, na)
fid = open(matname, "w")
fid.write("newmtl material_0\n")
fid.write("Kd 1 1 1\n")
fid.write("Ka 0 0 0\n")
fid.write("Ks 0.4 0.4 0.4\n")
fid.write("Ns 10\n")
fid.write("illum 2\n")
fid.write("map_Kd %s.png\n" % na)
fid.close()
####
fid = open(fname, "w")
fid.write("mtllib %s.mtl\n" % na)
for pidx, p3 in enumerate(pointnp_px3):
pp = p3
fid.write("v %f %f %f\n" % (pp[0], pp[1], pp[2]))
for pidx, p2 in enumerate(tcoords_px2):
pp = p2
fid.write("vt %f %f\n" % (pp[0], pp[1]))
fid.write("usemtl material_0\n")
for i, f in enumerate(facenp_fx3):
f1 = f + 1
f2 = facetex_fx3[i] + 1
fid.write("f %d/%d %d/%d %d/%d\n" % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
fid.close()
PIL.Image.fromarray(np.ascontiguousarray(tex_map), "RGB").save(
os.path.join(fol, "%s.png" % na))
return
class MeshOutput(object):
def __init__(self,
mesh_v: np.ndarray,
mesh_f: np.ndarray,
vertex_colors: Optional[np.ndarray] = None,
uvs: Optional[np.ndarray] = None,
mesh_tex_idx: Optional[np.ndarray] = None,
tex_map: Optional[np.ndarray] = None):
self.mesh_v = mesh_v
self.mesh_f = mesh_f
self.vertex_colors = vertex_colors
self.uvs = uvs
self.mesh_tex_idx = mesh_tex_idx
self.tex_map = tex_map
def contain_uv_texture(self):
return (self.uvs is not None) and (self.mesh_tex_idx is not None) and (self.tex_map is not None)
def contain_vertex_colors(self):
return self.vertex_colors is not None
def export(self, fname):
if self.contain_uv_texture():
savemeshtes2(
self.mesh_v,
self.uvs,
self.mesh_f,
self.mesh_tex_idx,
self.tex_map,
fname
)
elif self.contain_vertex_colors():
mesh_obj = trimesh.Trimesh(vertices=self.mesh_v, faces=self.mesh_f, vertex_colors=self.vertex_colors)
mesh_obj.export(fname)
else:
save_obj(
self.mesh_v,
self.mesh_f,
fname
)

View File

@ -0,0 +1,336 @@
# -*- coding: utf-8 -*-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import json
import math
import os
from typing import Tuple, Generic, Dict, List, Union, Optional
import trimesh
import numpy as np
import pytorch_lightning as pl
import pytorch_lightning.loggers
import torch
import torchvision
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_only
from hy3dshape.pipelines import export_to_trimesh
from hy3dshape.utils.trainings.mesh import MeshOutput
from hy3dshape.utils.visualizers import html_util
from hy3dshape.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
class ImageConditionalASLDiffuserLogger(Callback):
def __init__(self,
step_frequency: int,
num_samples: int = 1,
mean: Optional[Union[List[float], Tuple[float]]] = None,
std: Optional[Union[List[float], Tuple[float]]] = None,
bounds: Union[List[float], Tuple[float]] = (-1.1, -1.1, -1.1, 1.1, 1.1, 1.1),
**kwargs) -> None:
super().__init__()
self.bbox_size = np.array(bounds[3:6]) - np.array(bounds[0:3])
if mean is not None:
mean = np.asarray(mean)
if std is not None:
std = np.asarray(std)
self.mean = mean
self.std = std
self.step_freq = step_frequency
self.num_samples = num_samples
self.has_train_logged = False
self.logger_log_images = {
pl.loggers.WandbLogger: self._wandb,
}
self.viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")
@rank_zero_only
def _wandb(self, pl_module, images, batch_idx, split):
# raise ValueError("No way wandb")
grids = dict()
for k in images:
grid = torchvision.utils.make_grid(images[k])
grids[f"{split}/{k}"] = wandb.Image(grid)
pl_module.logger.experiment.log(grids)
def log_local(self,
outputs: List[List['Latent2MeshOutput']],
images: Union[np.ndarray, List[np.ndarray]],
description: List[str],
keys: List[str],
save_dir: str, split: str,
global_step: int, current_epoch: int, batch_idx: int,
prog_bar: bool = False,
multi_views=None, # yf ...
) -> None:
folder = "gs-{:010}_e-{:06}_b-{:06}".format(global_step, current_epoch, batch_idx)
visual_dir = os.path.join(save_dir, "visuals", split, folder)
os.makedirs(visual_dir, exist_ok=True)
num_samples = len(images)
for i in range(num_samples):
key_i = keys[i]
image_i = self.denormalize_image(images[i])
shape_tag_i = description[i]
for j in range(1):
mesh = outputs[j][i]
if mesh is None:
continue
mesh_v = mesh.mesh_v.copy()
mesh_v[:, 0] += j * np.max(self.bbox_size)
self.viewer.add_mesh(mesh_v, mesh.mesh_f)
image_tag = html_util.to_image_embed_tag(image_i)
mesh_tag = self.viewer.to_html(html_frame=False)
table_tag = f"""
<table border = "1">
<caption> {shape_tag_i} - {key_i} </caption>
<caption> Input Image | Generated Mesh </caption>
<tr>
<td>{image_tag}</td>
<td>{mesh_tag}</td>
</tr>
</table>
"""
if multi_views is not None:
multi_views_i = self.make_grid(multi_views[i])
views_tag = html_util.to_image_embed_tag(self.denormalize_image(multi_views_i))
table_tag = f"""
<table border = "1">
<caption> {shape_tag_i} - {key_i} </caption>
<caption> Input Image | Generated Mesh </caption>
<tr>
<td>{image_tag}</td>
<td>{views_tag}</td>
<td>{mesh_tag}</td>
</tr>
</table>
"""
html_frame = html_util.to_html_frame(table_tag)
if len(key_i) > 100:
key_i = key_i[:100]
with open(os.path.join(visual_dir, f"{key_i}.html"), "w") as writer:
writer.write(html_frame)
self.viewer.reset()
def log_sample(self,
pl_module: pl.LightningModule,
batch: Dict[str, torch.FloatTensor],
batch_idx: int,
split: str = "train") -> None:
"""
Args:
pl_module:
batch (dict): the batch sample information, and it contains:
- surface (torch.FloatTensor):
- image (torch.FloatTensor):
batch_idx (int):
split (str):
Returns:
"""
is_train = pl_module.training
if is_train:
pl_module.eval()
batch_size = len(batch["surface"])
replace = batch_size < self.num_samples
ids = np.random.choice(batch_size, self.num_samples, replace=replace)
with torch.no_grad():
# run text to mesh
# keys = [batch["__key__"][i] for i in ids]
keys = [f'key_{i}' for i in ids]
# texts = [batch["text"][i] for i in ids]
texts = [f'text_{i}'for i in ids]
# description = [batch["description"][i] for i in ids]
description = [f'desc_{i}' for i in ids]
images = batch["image"][ids]
mask_input = batch["mask"][ids] if 'mask' in batch else None
sample_batch = {
"__key__": keys,
"image": images,
'text': texts,
'mask': mask_input,
}
# if 'cam_parm' in batch:
# sample_batch['cam_parm'] = batch['cam_parm'][ids]
# if 'multi_views' in batch: # yf ...
# sample_batch['multi_views'] = batch['multi_views'][ids]
outputs = pl_module.sample(
batch=sample_batch,
output_type='latents2mesh'
)
images = images.cpu().float().numpy()
# images = self.denormalize_image(images)
# images = np.transpose(images, (0, 2, 3, 1))
# images = ((images + 1) / 2 * 255).astype(np.uint8)
self.log_local(outputs, images, description, keys, pl_module.logger.save_dir, split,
pl_module.global_step, pl_module.current_epoch, batch_idx, prog_bar=False,
multi_views=sample_batch.get('multi_views'))
if is_train: pl_module.train()
def make_grid(self, images): # return (3,h,w) in (0,1) ...
images_resized = []
for img in images:
img_resized = torchvision.transforms.functional.resize(img, (320, 320))
images_resized.append(img_resized)
image = torchvision.utils.make_grid(images_resized, nrow=2, padding=5, pad_value=255)
image = image.cpu().numpy()
# image = np.transpose(image, (1, 2, 0))
# image = (image * 255).astype(np.uint8)
return image
def check_frequency(self, step: int) -> bool:
if step % self.step_freq == 0:
return True
return False
def on_train_batch_end(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule,
outputs: Generic, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> None:
if (self.check_frequency(pl_module.global_step) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "sample") and
callable(pl_module.sample) and
self.num_samples > 0):
self.log_sample(pl_module, batch, batch_idx, split="train")
self.has_train_logged = True
def on_validation_batch_end(self, trainer: pl.trainer.Trainer, pl_module: pl.LightningModule,
outputs: Generic, batch: Dict[str, torch.FloatTensor],
dataloader_idx: int, batch_idx: int) -> None:
if self.has_train_logged:
self.log_sample(pl_module, batch, batch_idx, split="val")
self.has_train_logged = False
def denormalize_image(self, image):
"""
Args:
image (np.ndarray): [3, h, w]
Returns:
image (np.ndarray): [h, w, 3], np.uint8, [0, 255].
"""
# image = np.transpose(image, (0, 2, 3, 1))
image = np.transpose(image, (1, 2, 0))
if self.std is not None:
image = image * self.std
if self.mean is not None:
image = image + self.mean
image = (image * 255).astype(np.uint8)
return image
class ImageConditionalFixASLDiffuserLogger(Callback):
def __init__(
self,
step_frequency: int,
test_data_path: str,
max_size: int = None,
save_dir: str = 'infer',
**kwargs,
) -> None:
super().__init__()
self.step_freq = step_frequency
self.viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")
self.test_data_path = test_data_path
with open(self.test_data_path, 'r') as f:
data = json.load(f)
self.file_list = data['file_list']
self.file_folder = data['file_folder']
if max_size is not None:
self.file_list = self.file_list[:max_size]
self.kwargs = kwargs
self.save_dir = save_dir
def on_train_batch_end(
self,
trainer: pl.trainer.Trainer,
pl_module: pl.LightningModule,
outputs: Generic,
batch: Dict[str, torch.FloatTensor],
batch_idx: int,
):
if pl_module.global_step % self.step_freq == 0:
is_train = pl_module.training
if is_train:
pl_module.eval()
folder_path = self.file_folder
folder_name = os.path.basename(folder_path)
folder = "gs-{:010}_e-{:06}_b-{:06}".format(pl_module.global_step, pl_module.current_epoch, batch_idx)
visual_dir = os.path.join(pl_module.logger.save_dir, self.save_dir, folder, folder_name)
os.makedirs(visual_dir, exist_ok=True)
image_paths = self.file_list
chunk_size = math.ceil(len(image_paths) / trainer.world_size)
if pl_module.global_rank == trainer.world_size - 1:
image_paths = image_paths[pl_module.global_rank * chunk_size:]
else:
image_paths = image_paths[pl_module.global_rank * chunk_size:(pl_module.global_rank + 1) * chunk_size]
print(f'Rank{pl_module.global_rank}: processing {len(image_paths)}|{len(self.file_list)} images')
for image_path in image_paths:
if folder_path in image_path:
save_path = image_path.replace(folder_path, visual_dir)
else:
save_path = os.path.join(visual_dir, os.path.basename(image_path))
save_path = os.path.splitext(save_path)[0] + '.glb'
print(image_path)
with torch.no_grad():
mesh = pl_module.sample(batch={"image": image_path}, **self.kwargs)[0][0]
if isinstance(mesh, tuple) and len(mesh)==2:
mesh = export_to_trimesh(mesh)
elif isinstance(mesh, trimesh.Trimesh):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
mesh.export(save_path)
if is_train:
pl_module.train()

View File

@ -0,0 +1,78 @@
# -*- coding: utf-8 -*-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
from pytorch_lightning.callbacks import Callback
from omegaconf import OmegaConf, ListConfig
class PeftSaveCallback(Callback):
def __init__(self, peft_model, save_dir: str, save_every_n_steps: int = None):
super().__init__()
self.peft_model = peft_model
self.save_dir = save_dir
self.save_every_n_steps = save_every_n_steps
os.makedirs(self.save_dir, exist_ok=True)
def recursive_convert(self, obj):
from omegaconf import OmegaConf, ListConfig
if isinstance(obj, (OmegaConf, ListConfig)):
return OmegaConf.to_container(obj, resolve=True)
elif isinstance(obj, dict):
return {k: self.recursive_convert(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self.recursive_convert(i) for i in obj]
elif isinstance(obj, type):
# 避免修改类对象
return obj
elif hasattr(obj, '__dict__'):
for attr_name, attr_value in vars(obj).items():
setattr(obj, attr_name, self.recursive_convert(attr_value))
return obj
else:
return obj
# def recursive_convert(self, obj):
# if isinstance(obj, (OmegaConf, ListConfig)):
# return OmegaConf.to_container(obj, resolve=True)
# elif isinstance(obj, dict):
# return {k: self.recursive_convert(v) for k, v in obj.items()}
# elif isinstance(obj, list):
# return [self.recursive_convert(i) for i in obj]
# elif hasattr(obj, '__dict__'):
# for attr_name, attr_value in vars(obj).items():
# setattr(obj, attr_name, self.recursive_convert(attr_value))
# return obj
# else:
# return obj
def _convert_peft_config(self):
pc = self.peft_model.peft_config
self.peft_model.peft_config = self.recursive_convert(pc)
def on_train_epoch_end(self, trainer, pl_module):
self._convert_peft_config()
save_path = os.path.join(self.save_dir, f"epoch_{trainer.current_epoch}")
self.peft_model.save_pretrained(save_path)
print(f"[PeftSaveCallback] Saved LoRA weights to {save_path}")
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if self.save_every_n_steps is not None:
global_step = trainer.global_step
if global_step % self.save_every_n_steps == 0 and global_step > 0:
self._convert_peft_config()
save_path = os.path.join(self.save_dir, f"step_{global_step}")
self.peft_model.save_pretrained(save_path)
print(f"[PeftSaveCallback] Saved LoRA weights to {save_path}")

View File

@ -0,0 +1,128 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import logging
import os
from functools import wraps
import torch
def get_logger(name):
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
logger = get_logger('hy3dgen.shapgen')
class synchronize_timer:
""" Synchronized timer to count the inference time of `nn.Module.forward`.
Supports both context manager and decorator usage.
Example as context manager:
```python
with synchronize_timer('name') as t:
run()
```
Example as decorator:
```python
@synchronize_timer('Export to trimesh')
def export_to_trimesh(mesh_output):
pass
```
"""
def __init__(self, name=None):
self.name = name
def __enter__(self):
"""Context manager entry: start timing."""
if os.environ.get('HY3DGEN_DEBUG', '0') == '1':
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
return lambda: self.time
def __exit__(self, exc_type, exc_value, exc_tb):
"""Context manager exit: stop timing and log results."""
if os.environ.get('HY3DGEN_DEBUG', '0') == '1':
self.end.record()
torch.cuda.synchronize()
self.time = self.start.elapsed_time(self.end)
if self.name is not None:
logger.info(f'{self.name} takes {self.time} ms')
def __call__(self, func):
"""Decorator: wrap the function to time its execution."""
@wraps(func)
def wrapper(*args, **kwargs):
with self:
result = func(*args, **kwargs)
return result
return wrapper
def smart_load_model(
model_path,
subfolder,
use_safetensors,
variant,
):
original_model_path = model_path
# try local path
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
model_fld = os.path.expanduser(os.path.join(base_dir, model_path))
model_path = os.path.expanduser(os.path.join(base_dir, model_path, subfolder))
logger.info(f'Try to load model from local path: {model_path}')
if not os.path.exists(model_path):
logger.info('Model path not exists, try to download from huggingface')
try:
from huggingface_hub import snapshot_download
# 只下载指定子目录
path = snapshot_download(
repo_id=original_model_path,
allow_patterns=[f"{subfolder}/*"], # 关键修改:模式匹配子文件夹
local_dir=model_fld
)
model_path = os.path.join(path, subfolder) # 保持路径拼接逻辑不变
except ImportError:
logger.warning(
"You need to install HuggingFace Hub to load models from the hub."
)
raise RuntimeError(f"Model path {model_path} not found")
except Exception as e:
raise e
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model path {original_model_path} not found")
extension = 'ckpt' if not use_safetensors else 'safetensors'
variant = '' if variant is None else f'.{variant}'
ckpt_name = f'model{variant}.{extension}'
config_path = os.path.join(model_path, 'config.yaml')
ckpt_path = os.path.join(model_path, ckpt_name)
return config_path, ckpt_path

View File

@ -0,0 +1 @@
# -*- coding: utf-8 -*-

View File

@ -0,0 +1,57 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
import matplotlib.pyplot as plt
# Helper functions
def get_colors(inp, colormap="viridis", normalize=True, vmin=None, vmax=None):
colormap = plt.cm.get_cmap(colormap)
if normalize:
vmin = np.min(inp)
vmax = np.max(inp)
norm = plt.Normalize(vmin, vmax)
return colormap(norm(inp))[:, :3]
def gen_checkers(n_checkers_x, n_checkers_y, width=256, height=256):
# tex dims need to be power of two.
array = np.ones((width, height, 3), dtype='float32')
# width in texels of each checker
checker_w = width / n_checkers_x
checker_h = height / n_checkers_y
for y in range(height):
for x in range(width):
color_key = int(x / checker_w) + int(y / checker_h)
if color_key % 2 == 0:
array[x, y, :] = [1., 0.874, 0.0]
else:
array[x, y, :] = [0., 0., 0.]
return array
def gen_circle(width=256, height=256):
xx, yy = np.mgrid[:width, :height]
circle = (xx - width / 2 + 0.5) ** 2 + (yy - height / 2 + 0.5) ** 2
array = np.ones((width, height, 4), dtype='float32')
array[:, :, 0] = (circle <= width)
array[:, :, 1] = (circle <= width)
array[:, :, 2] = (circle <= width)
array[:, :, 3] = circle <= width
return array

View File

@ -0,0 +1,64 @@
# -*- coding: utf-8 -*-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import io
import base64
import numpy as np
from PIL import Image
def to_html_frame(content):
html_frame = f"""
<html>
<body>
{content}
</body>
</html>
"""
return html_frame
def to_single_row_table(caption: str, content: str):
table_html = f"""
<table border = "1">
<caption>{caption}</caption>
<tr>
<td>{content}</td>
</tr>
</table>
"""
return table_html
def to_image_embed_tag(image: np.ndarray):
# Convert np.ndarray to bytes
img = Image.fromarray(image)
raw_bytes = io.BytesIO()
img.save(raw_bytes, "PNG")
# Encode bytes to base64
image_base64 = base64.b64encode(raw_bytes.getvalue()).decode("utf-8")
image_tag = f"""
<img src="data:image/png;base64,{image_base64}" alt="Embedded Image">
"""
return image_tag

View File

@ -0,0 +1,549 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
from ipywidgets import embed
import pythreejs as p3s
import uuid
from .color_util import get_colors, gen_circle, gen_checkers
EMBED_URL = "https://cdn.jsdelivr.net/npm/@jupyter-widgets/html-manager@1.0.1/dist/embed-amd.js"
class PyThreeJSViewer(object):
def __init__(self, settings, render_mode="WEBSITE"):
self.render_mode = render_mode
self.__update_settings(settings)
self._light = p3s.DirectionalLight(color='white', position=[0, 0, 1], intensity=0.6)
self._light2 = p3s.AmbientLight(intensity=0.5)
self._cam = p3s.PerspectiveCamera(position=[0, 0, 1], lookAt=[0, 0, 0], fov=self.__s["fov"],
aspect=self.__s["width"] / self.__s["height"], children=[self._light])
self._orbit = p3s.OrbitControls(controlling=self._cam)
self._scene = p3s.Scene(children=[self._cam, self._light2], background=self.__s["background"]) # "#4c4c80"
self._renderer = p3s.Renderer(camera=self._cam, scene=self._scene, controls=[self._orbit],
width=self.__s["width"], height=self.__s["height"],
antialias=self.__s["antialias"])
self.__objects = {}
self.__cnt = 0
def jupyter_mode(self):
self.render_mode = "JUPYTER"
def offline(self):
self.render_mode = "OFFLINE"
def website(self):
self.render_mode = "WEBSITE"
def __get_shading(self, shading):
shad = {"flat": True, "wireframe": False, "wire_width": 0.03, "wire_color": "black",
"side": 'DoubleSide', "colormap": "viridis", "normalize": [None, None],
"bbox": False, "roughness": 0.5, "metalness": 0.25, "reflectivity": 1.0,
"line_width": 1.0, "line_color": "black",
"point_color": "red", "point_size": 0.01, "point_shape": "circle",
"text_color": "red"
}
for k in shading:
shad[k] = shading[k]
return shad
def __update_settings(self, settings={}):
sett = {"width": 1600, "height": 800, "antialias": True, "scale": 1.5, "background": "#ffffff",
"fov": 30}
for k in settings:
sett[k] = settings[k]
self.__s = sett
def __add_object(self, obj, parent=None):
if not parent: # Object is added to global scene and objects dict
self.__objects[self.__cnt] = obj
self.__cnt += 1
self._scene.add(obj["mesh"])
else: # Object is added to parent object and NOT to objects dict
parent.add(obj["mesh"])
self.__update_view()
if self.render_mode == "JUPYTER":
return self.__cnt - 1
elif self.render_mode == "WEBSITE":
return self
def __add_line_geometry(self, lines, shading, obj=None):
lines = lines.astype("float32", copy=False)
mi = np.min(lines, axis=0)
ma = np.max(lines, axis=0)
geometry = p3s.LineSegmentsGeometry(positions=lines.reshape((-1, 2, 3)))
material = p3s.LineMaterial(linewidth=shading["line_width"], color=shading["line_color"])
# , vertexColors='VertexColors'),
lines = p3s.LineSegments2(geometry=geometry, material=material) # type='LinePieces')
line_obj = {"geometry": geometry, "mesh": lines, "material": material,
"max": ma, "min": mi, "type": "Lines", "wireframe": None}
if obj:
return self.__add_object(line_obj, obj), line_obj
else:
return self.__add_object(line_obj)
def __update_view(self):
if len(self.__objects) == 0:
return
ma = np.zeros((len(self.__objects), 3))
mi = np.zeros((len(self.__objects), 3))
for r, obj in enumerate(self.__objects):
ma[r] = self.__objects[obj]["max"]
mi[r] = self.__objects[obj]["min"]
ma = np.max(ma, axis=0)
mi = np.min(mi, axis=0)
diag = np.linalg.norm(ma - mi)
mean = ((ma - mi) / 2 + mi).tolist()
scale = self.__s["scale"] * (diag)
self._orbit.target = mean
self._cam.lookAt(mean)
self._cam.position = [mean[0], mean[1], mean[2] + scale]
self._light.position = [mean[0], mean[1], mean[2] + scale]
self._orbit.exec_three_obj_method('update')
self._cam.exec_three_obj_method('updateProjectionMatrix')
def __get_bbox(self, v):
m = np.min(v, axis=0)
M = np.max(v, axis=0)
# Corners of the bounding box
v_box = np.array([[m[0], m[1], m[2]], [M[0], m[1], m[2]], [M[0], M[1], m[2]], [m[0], M[1], m[2]],
[m[0], m[1], M[2]], [M[0], m[1], M[2]], [M[0], M[1], M[2]], [m[0], M[1], M[2]]])
f_box = np.array([[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [7, 3]], dtype=np.uint32)
return v_box, f_box
def __get_colors(self, v, f, c, sh):
coloring = "VertexColors"
if type(c) == np.ndarray and c.size == 3: # Single color
colors = np.ones_like(v)
colors[:, 0] = c[0]
colors[:, 1] = c[1]
colors[:, 2] = c[2]
# print("Single colors")
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[1] == 3: # Color values for
if c.shape[0] == f.shape[0]: # faces
colors = np.hstack([c, c, c]).reshape((-1, 3))
coloring = "FaceColors"
# print("Face color values")
elif c.shape[0] == v.shape[0]: # vertices
colors = c
# print("Vertex color values")
else: # Wrong size, fallback
print("Invalid color array given! Supported are numpy arrays.", type(c))
colors = np.ones_like(v)
colors[:, 0] = 1.0
colors[:, 1] = 0.874
colors[:, 2] = 0.0
elif type(c) == np.ndarray and c.size == f.shape[0]: # Function values for faces
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
cc = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
# print(cc.shape)
colors = np.hstack([cc, cc, cc]).reshape((-1, 3))
coloring = "FaceColors"
# print("Face function values")
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function values for vertices
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
# print("Vertex function values")
else:
colors = np.ones_like(v)
colors[:, 0] = 1.0
colors[:, 1] = 0.874
colors[:, 2] = 0.0
# No color
if c is not None:
print("Invalid color array given! Supported are numpy arrays.", type(c))
return colors, coloring
def __get_point_colors(self, v, c, sh):
v_color = True
if c is None: # No color given, use global color
# conv = mpl.colors.ColorConverter()
colors = sh["point_color"] # np.array(conv.to_rgb(sh["point_color"]))
v_color = False
elif isinstance(c, str): # No color given, use global color
# conv = mpl.colors.ColorConverter()
colors = c # np.array(conv.to_rgb(c))
v_color = False
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] == 3:
# Point color
colors = c.astype("float32", copy=False)
elif isinstance(c, np.ndarray) and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] != 3:
# Function values for vertices, but the colors are features
c_norm = np.linalg.norm(c, ord=2, axis=-1)
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c_norm, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
colors = colors.astype("float32", copy=False)
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function color
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
colors = colors.astype("float32", copy=False)
# print("Vertex function values")
else:
print("Invalid color array given! Supported are numpy arrays.", type(c))
colors = sh["point_color"]
v_color = False
return colors, v_color
def add_mesh(self, v, f, c=None, uv=None, n=None, shading={}, texture_data=None, **kwargs):
shading.update(kwargs)
sh = self.__get_shading(shading)
mesh_obj = {}
# it is a tet
if v.shape[1] == 3 and f.shape[1] == 4:
f_tmp = np.ndarray([f.shape[0] * 4, 3], dtype=f.dtype)
for i in range(f.shape[0]):
f_tmp[i * 4 + 0] = np.array([f[i][1], f[i][0], f[i][2]])
f_tmp[i * 4 + 1] = np.array([f[i][0], f[i][1], f[i][3]])
f_tmp[i * 4 + 2] = np.array([f[i][1], f[i][2], f[i][3]])
f_tmp[i * 4 + 3] = np.array([f[i][2], f[i][0], f[i][3]])
f = f_tmp
if v.shape[1] == 2:
v = np.append(v, np.zeros([v.shape[0], 1]), 1)
# Type adjustment vertices
v = v.astype("float32", copy=False)
# Color setup
colors, coloring = self.__get_colors(v, f, c, sh)
# Type adjustment faces and colors
c = colors.astype("float32", copy=False)
# Material and geometry setup
ba_dict = {"color": p3s.BufferAttribute(c)}
if coloring == "FaceColors":
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
for ii in range(f.shape[0]):
# print(ii*3, f[ii])
verts[ii * 3] = v[f[ii, 0]]
verts[ii * 3 + 1] = v[f[ii, 1]]
verts[ii * 3 + 2] = v[f[ii, 2]]
v = verts
else:
f = f.astype("uint32", copy=False).ravel()
ba_dict["index"] = p3s.BufferAttribute(f, normalized=False)
ba_dict["position"] = p3s.BufferAttribute(v, normalized=False)
if uv is not None:
uv = (uv - np.min(uv)) / (np.max(uv) - np.min(uv))
if texture_data is None:
texture_data = gen_checkers(20, 20)
tex = p3s.DataTexture(data=texture_data, format="RGBFormat", type="FloatType")
material = p3s.MeshStandardMaterial(map=tex, reflectivity=sh["reflectivity"], side=sh["side"],
roughness=sh["roughness"], metalness=sh["metalness"],
flatShading=sh["flat"],
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
ba_dict["uv"] = p3s.BufferAttribute(uv.astype("float32", copy=False))
else:
material = p3s.MeshStandardMaterial(vertexColors=coloring, reflectivity=sh["reflectivity"],
side=sh["side"], roughness=sh["roughness"], metalness=sh["metalness"],
flatShading=sh["flat"],
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
if type(n) != type(None) and coloring == "VertexColors": # TODO: properly handle normals for FaceColors as well
ba_dict["normal"] = p3s.BufferAttribute(n.astype("float32", copy=False), normalized=True)
geometry = p3s.BufferGeometry(attributes=ba_dict)
if coloring == "VertexColors" and type(n) == type(None):
geometry.exec_three_obj_method('computeVertexNormals')
elif coloring == "FaceColors" and type(n) == type(None):
geometry.exec_three_obj_method('computeFaceNormals')
# Mesh setup
mesh = p3s.Mesh(geometry=geometry, material=material)
# Wireframe setup
mesh_obj["wireframe"] = None
if sh["wireframe"]:
wf_geometry = p3s.WireframeGeometry(mesh.geometry) # WireframeGeometry
wf_material = p3s.LineBasicMaterial(color=sh["wire_color"], linewidth=sh["wire_width"])
wireframe = p3s.LineSegments(wf_geometry, wf_material)
mesh.add(wireframe)
mesh_obj["wireframe"] = wireframe
# Bounding box setup
if sh["bbox"]:
v_box, f_box = self.__get_bbox(v)
_, bbox = self.add_edges(v_box, f_box, sh, mesh)
mesh_obj["bbox"] = [bbox, v_box, f_box]
# Object setup
mesh_obj["max"] = np.max(v, axis=0)
mesh_obj["min"] = np.min(v, axis=0)
mesh_obj["geometry"] = geometry
mesh_obj["mesh"] = mesh
mesh_obj["material"] = material
mesh_obj["type"] = "Mesh"
mesh_obj["shading"] = sh
mesh_obj["coloring"] = coloring
mesh_obj["arrays"] = [v, f, c] # TODO replays with proper storage or remove if not needed
return self.__add_object(mesh_obj)
def add_lines(self, beginning, ending, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if len(beginning.shape) == 1:
if len(beginning) == 2:
beginning = np.array([[beginning[0], beginning[1], 0]])
else:
if beginning.shape[1] == 2:
beginning = np.append(
beginning, np.zeros([beginning.shape[0], 1]), 1)
if len(ending.shape) == 1:
if len(ending) == 2:
ending = np.array([[ending[0], ending[1], 0]])
else:
if ending.shape[1] == 2:
ending = np.append(
ending, np.zeros([ending.shape[0], 1]), 1)
sh = self.__get_shading(shading)
lines = np.hstack([beginning, ending])
lines = lines.reshape((-1, 3))
return self.__add_line_geometry(lines, sh, obj)
def add_edges(self, vertices, edges, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if vertices.shape[1] == 2:
vertices = np.append(
vertices, np.zeros([vertices.shape[0], 1]), 1)
sh = self.__get_shading(shading)
lines = np.zeros((edges.size, 3))
cnt = 0
for e in edges:
lines[cnt, :] = vertices[e[0]]
lines[cnt + 1, :] = vertices[e[1]]
cnt += 2
return self.__add_line_geometry(lines, sh, obj)
def add_points(self, points, c=None, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if len(points.shape) == 1:
if len(points) == 2:
points = np.array([[points[0], points[1], 0]])
else:
if points.shape[1] == 2:
points = np.append(
points, np.zeros([points.shape[0], 1]), 1)
sh = self.__get_shading(shading)
points = points.astype("float32", copy=False)
mi = np.min(points, axis=0)
ma = np.max(points, axis=0)
g_attributes = {"position": p3s.BufferAttribute(points, normalized=False)}
m_attributes = {"size": sh["point_size"]}
if sh["point_shape"] == "circle": # Plot circles
tex = p3s.DataTexture(data=gen_circle(16, 16), format="RGBAFormat", type="FloatType")
m_attributes["map"] = tex
m_attributes["alphaTest"] = 0.5
m_attributes["transparency"] = True
else: # Plot squares
pass
colors, v_colors = self.__get_point_colors(points, c, sh)
if v_colors: # Colors per point
m_attributes["vertexColors"] = 'VertexColors'
g_attributes["color"] = p3s.BufferAttribute(colors, normalized=False)
else: # Colors for all points
m_attributes["color"] = colors
material = p3s.PointsMaterial(**m_attributes)
geometry = p3s.BufferGeometry(attributes=g_attributes)
points = p3s.Points(geometry=geometry, material=material)
point_obj = {"geometry": geometry, "mesh": points, "material": material,
"max": ma, "min": mi, "type": "Points", "wireframe": None}
if obj:
return self.__add_object(point_obj, obj), point_obj
else:
return self.__add_object(point_obj)
def remove_object(self, obj_id):
if obj_id not in self.__objects:
print("Invalid object id. Valid ids are: ", list(self.__objects.keys()))
return
self._scene.remove(self.__objects[obj_id]["mesh"])
del self.__objects[obj_id]
self.__update_view()
def reset(self):
for obj_id in list(self.__objects.keys()).copy():
self._scene.remove(self.__objects[obj_id]["mesh"])
del self.__objects[obj_id]
self.__update_view()
def update_object(self, oid=0, vertices=None, colors=None, faces=None):
obj = self.__objects[oid]
if type(vertices) != type(None):
if obj["coloring"] == "FaceColors":
f = obj["arrays"][1]
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
for ii in range(f.shape[0]):
# print(ii*3, f[ii])
verts[ii * 3] = vertices[f[ii, 0]]
verts[ii * 3 + 1] = vertices[f[ii, 1]]
verts[ii * 3 + 2] = vertices[f[ii, 2]]
v = verts
else:
v = vertices.astype("float32", copy=False)
obj["geometry"].attributes["position"].array = v
# self.wireframe.attributes["position"].array = v # Wireframe updates?
obj["geometry"].attributes["position"].needsUpdate = True
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
if type(colors) != type(None):
colors, coloring = self.__get_colors(obj["arrays"][0], obj["arrays"][1], colors, obj["shading"])
colors = colors.astype("float32", copy=False)
obj["geometry"].attributes["color"].array = colors
obj["geometry"].attributes["color"].needsUpdate = True
if type(faces) != type(None):
if obj["coloring"] == "FaceColors":
print("Face updates are currently only possible in vertex color mode.")
return
f = faces.astype("uint32", copy=False).ravel()
print(obj["geometry"].attributes)
obj["geometry"].attributes["index"].array = f
# self.wireframe.attributes["position"].array = v # Wireframe updates?
obj["geometry"].attributes["index"].needsUpdate = True
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
# self.mesh.geometry.verticesNeedUpdate = True
# self.mesh.geometry.elementsNeedUpdate = True
# self.update()
if self.render_mode == "WEBSITE":
return self
# def update(self):
# self.mesh.exec_three_obj_method('update')
# self.orbit.exec_three_obj_method('update')
# self.cam.exec_three_obj_method('updateProjectionMatrix')
# self.scene.exec_three_obj_method('update')
def add_text(self, text, shading={}, **kwargs):
shading.update(kwargs)
sh = self.__get_shading(shading)
tt = p3s.TextTexture(string=text, color=sh["text_color"])
sm = p3s.SpriteMaterial(map=tt)
text = p3s.Sprite(material=sm, scaleToTexture=True)
self._scene.add(text)
# def add_widget(self, widget, callback):
# self.widgets.append(widget)
# widget.observe(callback, names='value')
# def add_dropdown(self, options, default, desc, cb):
# widget = widgets.Dropdown(options=options, value=default, description=desc)
# self.__widgets.append(widget)
# widget.observe(cb, names="value")
# display(widget)
# def add_button(self, text, cb):
# button = widgets.Button(description=text)
# self.__widgets.append(button)
# button.on_click(cb)
# display(button)
def to_html(self, imports=True, html_frame=True):
# Bake positions (fixes centering bug in offline rendering)
if len(self.__objects) == 0:
return
ma = np.zeros((len(self.__objects), 3))
mi = np.zeros((len(self.__objects), 3))
for r, obj in enumerate(self.__objects):
ma[r] = self.__objects[obj]["max"]
mi[r] = self.__objects[obj]["min"]
ma = np.max(ma, axis=0)
mi = np.min(mi, axis=0)
diag = np.linalg.norm(ma - mi)
mean = (ma - mi) / 2 + mi
for r, obj in enumerate(self.__objects):
v = self.__objects[obj]["geometry"].attributes["position"].array
v -= mean
# v += np.array([0.0, .9, 0.0]) #! to move the obj to the center of window
scale = self.__s["scale"] * (diag)
self._orbit.target = [0.0, 0.0, 0.0]
self._cam.lookAt([0.0, 0.0, 0.0])
# self._cam.position = [0.0, 0.0, scale]
self._cam.position = [0.0, 0.5, scale * 1.3] #! show four complete meshes in the window
self._light.position = [0.0, 0.0, scale]
state = embed.dependency_state(self._renderer)
# Somehow these entries are missing when the state is exported in python.
# Exporting from the GUI works, so we are inserting the missing entries.
for k in state:
if state[k]["model_name"] == "OrbitControlsModel":
state[k]["state"]["maxAzimuthAngle"] = "inf"
state[k]["state"]["maxDistance"] = "inf"
state[k]["state"]["maxZoom"] = "inf"
state[k]["state"]["minAzimuthAngle"] = "-inf"
tpl = embed.load_requirejs_template
if not imports:
embed.load_requirejs_template = ""
s = embed.embed_snippet(self._renderer, state=state, embed_url=EMBED_URL)
# s = embed.embed_snippet(self.__w, state=state)
embed.load_requirejs_template = tpl
if html_frame:
s = "<html>\n<body>\n" + s + "\n</body>\n</html>"
# Revert changes
for r, obj in enumerate(self.__objects):
v = self.__objects[obj]["geometry"].attributes["position"].array
v += mean
self.__update_view()
return s
def save(self, filename=""):
if filename == "":
uid = str(uuid.uuid4()) + ".html"
else:
filename = filename.replace(".html", "")
uid = filename + '.html'
with open(uid, "w") as f:
f.write(self.to_html())
print("Plot saved to file %s." % uid)

30
hy3dshape/minimal_demo.py Normal file
View File

@ -0,0 +1,30 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
from PIL import Image
from hy3dshape.rembg import BackgroundRemover
from hy3dshape.pipelines import Hunyuan3DDiTFlowMatchingPipeline
model_path = 'tencent/Hunyuan3D-2.1'
pipeline_shapegen = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(model_path)
image_path = 'demos/demo.png'
image = Image.open(image_path).convert("RGBA")
if image.mode == 'RGB':
rembg = BackgroundRemover()
image = rembg(image)
mesh = pipeline_shapegen(image=image)[0]
mesh.export('demo.glb')

View File

@ -0,0 +1,51 @@
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import torch
from hy3dshape.surface_loaders import SharpEdgeSurfaceLoader
from hy3dshape.models.autoencoders import ShapeVAE
from hy3dshape.pipelines import export_to_trimesh
vae = ShapeVAE.from_pretrained(
'tencent/Hunyuan3D-2.1',
use_safetensors=False,
variant='fp16',
)
loader = SharpEdgeSurfaceLoader(
num_sharp_points=0,
num_uniform_points=81920,
)
mesh_demo = 'demos/demo.glb'
surface = loader(mesh_demo).to('cuda', dtype=torch.float16)
print(surface.shape)
latents = vae.encode(surface)
latents = vae.decode(latents)
mesh = vae.latents2mesh(
latents,
output_type='trimesh',
bounds=1.01,
mc_level=0.0,
num_chunks=20000,
octree_resolution=256,
mc_algo='mc',
enable_pbar=True
)
mesh = export_to_trimesh(mesh)[0]
mesh.export('output.obj')

127
nodes.py
View File

@ -139,6 +139,54 @@ class Hy3DModelLoader:
return (pipe, vae,) return (pipe, vae,)
class Hy3D_2_1SimpleMeshGen:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}),
"image": ("IMAGE", {"tooltip": "Image to generate mesh from"}),
"steps": ("INT", {"default": 50, "min": 1, "max": 100, "step": 1, "tooltip": "Number of diffusion steps"}),
"guidance_scale": ("FLOAT", {"default": 5.0, "min": 1, "max": 30, "step": 0.1, "tooltip": "Guidance scale"}),
"octree_resolution": ("INT", {"default": 384, "min": 32, "max": 1024, "step": 32, "tooltip": "Octree resolution"}),
},
}
RETURN_TYPES = ("TRIMESH", )
RETURN_NAMES = ("trimesh",)
FUNCTION = "loadmodel"
CATEGORY = "Hunyuan3DWrapper"
def loadmodel(self, model, image, steps, guidance_scale, octree_resolution):
device = mm.get_torch_device()
offload_device=mm.unet_offload_device()
from .hy3dshape.hy3dshape.pipelines import Hunyuan3DDiTFlowMatchingPipeline
from .hy3dshape.hy3dshape.rembg import BackgroundRemover
import torchvision.transforms as T
model_path = folder_paths.get_full_path("diffusion_models", model)
if not hasattr(self, "pipeline"):
self.pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_single_file(
config_path=os.path.join(script_directory, 'configs', 'dit_config_2_1.yaml'),
ckpt_path=model_path)
to_pil = T.ToPILImage()
image = to_pil(image[0].permute(2, 0, 1))
if image.mode == 'RGB':
rembg = BackgroundRemover()
image = rembg(image)
mesh = self.pipeline(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
octree_resolution=octree_resolution
)[0]
return (mesh,)
class Hy3DVAELoader: class Hy3DVAELoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -315,7 +363,7 @@ class DownloadAndLoadHy3DPaintModel:
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"model": (["hunyuan3d-paint-v2-0"],), "model": (["hunyuan3d-paint-v2-0", "hunyuan3d-paint-v2-0-turbo"],),
}, },
"optional": { "optional": {
"compile_args": ("HY3DCOMPILEARGS", {"tooltip": "torch.compile settings, when connected to the model loader, torch.compile of the selected models is attempted. Requires Triton and torch 2.5.0 is recommended"}), "compile_args": ("HY3DCOMPILEARGS", {"tooltip": "torch.compile settings, when connected to the model loader, torch.compile of the selected models is attempted. Requires Triton and torch 2.5.0 is recommended"}),
@ -340,7 +388,7 @@ class DownloadAndLoadHy3DPaintModel:
snapshot_download( snapshot_download(
repo_id="tencent/Hunyuan3D-2", repo_id="tencent/Hunyuan3D-2",
allow_patterns=[f"*{model}*"], allow_patterns=[f"*{model}*"],
ignore_patterns=["*diffusion_pytorch_model.bin"], ignore_patterns=["*unet/diffusion_pytorch_model.bin", "*image_encoder*"],
local_dir=download_path, local_dir=download_path,
local_dir_use_symlinks=False, local_dir_use_symlinks=False,
) )
@ -1031,11 +1079,62 @@ class Hy3DLoadMesh:
DESCRIPTION = "Loads a glb model from the given path." DESCRIPTION = "Loads a glb model from the given path."
def load(self, glb_path): def load(self, glb_path):
if not os.path.exists(glb_path):
glb_path = os.path.join(folder_paths.get_input_directory(), glb_path)
trimesh = Trimesh.load(glb_path, force="mesh") trimesh = Trimesh.load(glb_path, force="mesh")
return (trimesh,) return (trimesh,)
class TrimeshToMESH:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"trimesh": ("TRIMESH",),
}
}
RETURN_TYPES = ("MESH",)
OUTPUT_TOOLTIPS = ("MESH object containing vertices and faces as torch tensors.",)
FUNCTION = "load"
CATEGORY = "Hunyuan3DWrapper"
DESCRIPTION = "Converts trimesh object to ComfyUI MESH object, which only includes mesh data"
def load(self, trimesh):
vertices = torch.tensor(trimesh.vertices, dtype=torch.float32)
faces = torch.tensor(trimesh.faces, dtype=torch.float32)
mesh = (self.MESH(vertices.unsqueeze(0), faces.unsqueeze(0)))
return (mesh,)
class MESH:
def __init__(self, vertices, faces):
self.vertices = vertices
self.faces = faces
class MESHToTrimesh:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mesh": ("MESH",),
}
}
RETURN_TYPES = ("TRIMESH",)
OUTPUT_TOOLTIPS = ("TRIMESH object containing vertices and faces as torch tensors.",)
FUNCTION = "load"
CATEGORY = "Hunyuan3DWrapper"
DESCRIPTION = "Converts trimesh object to ComfyUI MESH object, which only includes mesh data"
def load(self, mesh):
mesh_output = Trimesh.Trimesh(mesh.vertices[0], mesh.faces[0])
return (mesh_output,)
class Hy3DUploadMesh: class Hy3DUploadMesh:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -1178,14 +1277,22 @@ class Hy3DGenerateMeshMultiView():
pipeline.to(device) pipeline.to(device)
if front is not None: if front is not None and not torch.all(front < 1e-6).item():
front = front.clone().permute(0, 3, 1, 2).to(device) front = front.clone().permute(0, 3, 1, 2).to(device)
if back is not None: else:
front = None
if back is not None and not torch.all(back < 1e-6).item():
back = back.clone().permute(0, 3, 1, 2).to(device) back = back.clone().permute(0, 3, 1, 2).to(device)
if left is not None: else:
back = None
if left is not None and not torch.all(left < 1e-6).item():
left = left.clone().permute(0, 3, 1, 2).to(device) left = left.clone().permute(0, 3, 1, 2).to(device)
if right is not None: else:
left = None
if right is not None and not torch.all(right < 1e-6).item():
right = right.clone().permute(0, 3, 1, 2).to(device) right = right.clone().permute(0, 3, 1, 2).to(device)
else:
right = None
view_dict = { view_dict = {
'front': front, 'front': front,
@ -1774,6 +1881,7 @@ class Hy3DNvdiffrastRenderer:
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"Hy3DModelLoader": Hy3DModelLoader, "Hy3DModelLoader": Hy3DModelLoader,
"Hy3D_2_1SimpleMeshGen": Hy3D_2_1SimpleMeshGen,
"Hy3DVAELoader": Hy3DVAELoader, "Hy3DVAELoader": Hy3DVAELoader,
"Hy3DGenerateMesh": Hy3DGenerateMesh, "Hy3DGenerateMesh": Hy3DGenerateMesh,
"Hy3DGenerateMeshMultiView": Hy3DGenerateMeshMultiView, "Hy3DGenerateMeshMultiView": Hy3DGenerateMeshMultiView,
@ -1805,10 +1913,13 @@ NODE_CLASS_MAPPINGS = {
"Hy3DMeshInfo": Hy3DMeshInfo, "Hy3DMeshInfo": Hy3DMeshInfo,
"Hy3DFastSimplifyMesh": Hy3DFastSimplifyMesh, "Hy3DFastSimplifyMesh": Hy3DFastSimplifyMesh,
"Hy3DNvdiffrastRenderer": Hy3DNvdiffrastRenderer, "Hy3DNvdiffrastRenderer": Hy3DNvdiffrastRenderer,
"TrimeshToMESH": TrimeshToMESH,
"MESHToTrimesh": MESHToTrimesh,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"Hy3DModelLoader": "Hy3DModelLoader", "Hy3DModelLoader": "Hy3DModelLoader",
"Hy3D_2_1SimpleMeshGen": "Hy3D_2_1SimpleMeshGen",
#"Hy3DVAELoader": "Hy3DVAELoader", #"Hy3DVAELoader": "Hy3DVAELoader",
"Hy3DGenerateMesh": "Hy3DGenerateMesh", "Hy3DGenerateMesh": "Hy3DGenerateMesh",
"Hy3DGenerateMeshMultiView": "Hy3DGenerateMeshMultiView", "Hy3DGenerateMeshMultiView": "Hy3DGenerateMeshMultiView",
@ -1839,5 +1950,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"Hy3DBPT": "Hy3D BPT", "Hy3DBPT": "Hy3D BPT",
"Hy3DMeshInfo": "Hy3D Mesh Info", "Hy3DMeshInfo": "Hy3D Mesh Info",
"Hy3DFastSimplifyMesh": "Hy3D Fast Simplify Mesh", "Hy3DFastSimplifyMesh": "Hy3D Fast Simplify Mesh",
"Hy3DNvdiffrastRenderer": "Hy3D Nvdiffrast Renderer" "Hy3DNvdiffrastRenderer": "Hy3D Nvdiffrast Renderer",
"TrimeshToMESH": "Trimesh to MESH",
"MESHToTrimesh": "MESH to Trimesh",
} }

View File

@ -1,7 +1,7 @@
[project] [project]
name = "comfyui-hunyan3dwrapper" name = "comfyui-hunyuan3dwrapper"
description = "Wrapper nodes for https://github.com/Tencent/Hunyuan3D-2, additional installation steps needed, please check the github repository" description = "Wrapper nodes for https://github.com/Tencent/Hunyuan3D-2, additional installation steps needed, please check the github repository"
version = "1.0.5" version = "1.0.6"
license = {file = "LICENSE"} license = {file = "LICENSE"}
dependencies = ["trimesh", "diffusers>=0.31.0","accelerate","huggingface_hub","einops","opencv-python","transformers","xatlas","pymeshlab","pygltflib","scikit-learn","scikit-image","pybind11"] dependencies = ["trimesh", "diffusers>=0.31.0","accelerate","huggingface_hub","einops","opencv-python","transformers","xatlas","pymeshlab","pygltflib","scikit-learn","scikit-image","pybind11"]