mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-10 05:15:05 +08:00
Update image_nodes.py
This commit is contained in:
parent
56979210c7
commit
095c8d4b52
@ -1098,13 +1098,14 @@ class ImagePrepForICLora:
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"reference_image": ("IMAGE",),
|
||||
"output_width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"output_height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"border_width": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
"latent_image": ("IMAGE",),
|
||||
"reference_mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
@ -1113,17 +1114,19 @@ class ImagePrepForICLora:
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def expand_image(self, image, output_width, output_height, border_width, mask=None):
|
||||
if mask is not None:
|
||||
if torch.allclose(mask, torch.zeros_like(mask)):
|
||||
def expand_image(self, reference_image, output_width, output_height, border_width, latent_image=None, reference_mask=None):
|
||||
|
||||
if reference_mask is not None:
|
||||
if torch.allclose(reference_mask, torch.zeros_like(reference_mask)):
|
||||
print("Warning: The incoming mask is fully black. Handling it as None.")
|
||||
mask = None
|
||||
reference_mask = None
|
||||
image = reference_image
|
||||
B, H, W, C = image.size()
|
||||
|
||||
# Handle mask
|
||||
if mask is not None:
|
||||
if reference_mask is not None:
|
||||
resized_mask = torch.nn.functional.interpolate(
|
||||
mask.unsqueeze(1),
|
||||
reference_mask.unsqueeze(1),
|
||||
size=(image.shape[1], image.shape[2]),
|
||||
mode='nearest'
|
||||
).squeeze(1)
|
||||
@ -1137,15 +1140,19 @@ class ImagePrepForICLora:
|
||||
resized_image = common_upscale(image.movedim(-1,1), new_width, output_height, "lanczos", "disabled").movedim(1,-1)
|
||||
|
||||
# Create padded image
|
||||
empty_image = torch.zeros((B, output_height, output_width, C), device=image.device)
|
||||
if latent_image is None:
|
||||
pad_image = torch.zeros((B, output_height, output_width, C), device=image.device)
|
||||
else:
|
||||
resized_latent_image = common_upscale(latent_image.movedim(-1,1), output_width, output_height, "lanczos", "disabled").movedim(1,-1)
|
||||
pad_image = resized_latent_image
|
||||
|
||||
if border_width > 0:
|
||||
border = torch.zeros((B, output_height, border_width, C), device=image.device)
|
||||
padded_image = torch.cat((resized_image, border, empty_image), dim=2)
|
||||
padded_image = torch.cat((resized_image, border, pad_image), dim=2)
|
||||
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device)
|
||||
padded_mask[:, :, :new_width + border_width] = 0
|
||||
else:
|
||||
padded_image = torch.cat((resized_image, empty_image), dim=2)
|
||||
padded_image = torch.cat((resized_image, pad_image), dim=2)
|
||||
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device)
|
||||
padded_mask[:, :, :new_width] = 0
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user