mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 18:44:31 +08:00
experimental
This commit is contained in:
parent
07288d1b6f
commit
3ba3ddf0b1
@ -127,6 +127,7 @@ NODE_CONFIG = {
|
||||
"Superprompt": {"class": Superprompt, "name": "Superprompt"},
|
||||
"GLIGENTextBoxApplyBatchCoords": {"class": GLIGENTextBoxApplyBatchCoords},
|
||||
"Intrinsic_lora_sampling": {"class": Intrinsic_lora_sampling, "name": "Intrinsic Lora Sampling"},
|
||||
"CheckpointPerturbWeights": {"class": CheckpointPerturbWeights, "name": "CheckpointPerturbWeights"},
|
||||
|
||||
#instance diffusion
|
||||
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
|
||||
|
||||
@ -9,7 +9,7 @@ import json, re, os, io, time
|
||||
import model_management
|
||||
import folder_paths
|
||||
from nodes import MAX_RESOLUTION
|
||||
from comfy.utils import common_upscale
|
||||
from comfy.utils import common_upscale, ProgressBar
|
||||
|
||||
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts"))
|
||||
@ -1657,4 +1657,44 @@ If no image is provided, mode is set to text-to-image
|
||||
raise Exception(f"Server error: {error_data}")
|
||||
except json.JSONDecodeError:
|
||||
# If the response is not valid JSON, raise a different exception
|
||||
raise Exception(f"Server error: {response.text}")
|
||||
raise Exception(f"Server error: {response.text}")
|
||||
|
||||
class CheckpointPerturbWeights:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"model": ("MODEL",),
|
||||
"joint_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
|
||||
"rest_of_the_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "mod"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
|
||||
def mod(self, model, joint_blocks, rest_of_the_blocks):
|
||||
import copy
|
||||
device = model_management.get_torch_device()
|
||||
model_copy = copy.deepcopy(model)
|
||||
model_copy.model.to(device)
|
||||
keys = model_copy.model.diffusion_model.state_dict().keys()
|
||||
|
||||
dict = {}
|
||||
for key in keys:
|
||||
dict[key] = model_copy.model.diffusion_model.state_dict()[key]
|
||||
|
||||
pbar = ProgressBar(len(keys))
|
||||
for k in keys:
|
||||
v = dict[k] # This is common to both conditions, so we can take it out
|
||||
print(f'{k}: {v.std()}')
|
||||
if k.startswith('joint_blocks'):
|
||||
multiplier = joint_blocks
|
||||
else:
|
||||
multiplier = rest_of_the_blocks
|
||||
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device)
|
||||
pbar.update(1)
|
||||
model_copy.model.diffusion_model.load_state_dict(dict)
|
||||
return model_copy,
|
||||
Loading…
x
Reference in New Issue
Block a user